zoukankan      html  css  js  c++  java
  • [ICPC 北京 2017 J题]HihoCoder 1636 Pangu and Stones

    #1636 : Pangu and Stones

    时间限制:1000ms
    单点时限:1000ms
    内存限制:256MB

    描述

    In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He woke up from an egg and split the egg into two parts: the sky and the earth.

    At the beginning, there was no mountain on the earth, only stones all over the land.

    There were N piles of stones, numbered from 1 to N. Pangu wanted to merge all of them into one pile to build a great mountain. If the sum of stones of some piles was S, Pangu would need S seconds to pile them into one pile, and there would be S stones in the new pile.

    Unfortunately, every time Pangu could only merge successive piles into one pile. And the number of piles he merged shouldn't be less than L or greater than R.

    Pangu wanted to finish this as soon as possible.

    Can you help him? If there was no solution, you should answer '0'.

    输入

    There are multiple test cases.

    The first line of each case contains three integers N,L,R as above mentioned (2<=N<=100,2<=L<=R<=N).

    The second line of each case contains N integers a1,a2 …aN (1<= ai  <=1000,i= 1…N ), indicating the number of stones of  pile 1, pile 2 …pile N.

    The number of test cases is less than 110 and there are at most 5 test cases in which N >= 50.

    输出

    For each test case, you should output the minimum time(in seconds) Pangu had to take . If it was impossible for Pangu to do his job, you should output  0.

    样例输入
    3 2 2
    1 2 3
    3 2 3
    1 2 3
    4 3 3
    1 2 3 4
    样例输出
    9
    6
    0

    【题意】

    n个石子堆排成一排,每次可以将连续的最少L堆,最多R堆石子合并在一起,消耗的代价为要合并的石子总数。

    求合并成1堆的最小代价,如果无法做到输出0

     

    【分析】

    石子归并系列题目,一般都是区间DP,于是——

    dp[i][j][k] ij 分为k堆的最小代价。显然 dp[i][j][ j-i+1]代价为0

    然后[i,j] 可以划分

    dp[i][j][k]  = min { dp[i][d][k-1] + dp[d+1][j][1] } (k > 1&&d-i+1 >= k-1,这个条件意思就是 区间i,d之间最少要有k-1个石子

    最后合并的时候 

    dp[i][j][1] = min{ dp[i][d][k-1] + dp[d+1][j][1]  + sum[j] - sum[i-1] }  (l<=k<=r)

     

    【代码】

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    const int N=105;
    int n,L,R,s[N],f[N][N][N];
    inline void Init(){
    	for(int i=1;i<=n;i++) scanf("%d",s+i),s[i]+=s[i-1];
    }
    inline void Solve(){
    	memset(f,0x3f,sizeof f);
    	for(int i=1;i<=n;i++){
    		for(int j=i;j<=n;j++){
    				f[i][j][j-i+1]=0;
    		}
    	}  
    	for(int i=n-1;i;i--){
    		for(int j=i+1;j<=n;j++){
    			for(int k=i;k<j;k++){
    				for(int t=L;t<=R;t++){
    					f[i][j][1]=min(f[i][j][1],f[i][k][t-1]+f[k+1][j][1]+s[j]-s[i-1]);
    				}
    				for(int t=2;t<j-i+1;t++){
    					f[i][j][t]=min(f[i][j][t],f[i][k][t-1]+f[k+1][j][1]);
    				}
    			}
    		}
    	}
    	ll ans=f[1][n][1];
    	printf("%d
    ",ans<0x3f3f3f3f?ans:0);
    }
    int main(){
    	while(scanf("%d%d%d",&n,&L,&R)==3){
    		Init();
    		Solve();
    	}
    	return 0;
    } 
  • 相关阅读:
    高程第五章(引用类型)
    第四章(变量、作用域、内存问题)
    label语句和break continue的使用(高程第三章)
    高级程序设计第三章
    max取得数组的最大值
    使用bind()扩充作用域
    函数
    数据类型、字符编码、文件处理
    Python入门
    8.8每日作业系列之循环模块运用
  • 原文地址:https://www.cnblogs.com/shenben/p/10494993.html
Copyright © 2011-2022 走看看