zoukankan      html  css  js  c++  java
  • CCF 201409-4 最优配餐

    问题描述

      栋栋最近开了一家餐饮连锁店,提供外卖服务。随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。
      栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。
      方格图中的线表示可以行走的道路,相邻两个格点的距离为1。栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。


      送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费1块钱。每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。
      现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。

    输入格式

      输入的第一行包含四个整数n, m, k, d,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。
      接下来m行,每行两个整数xi, yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。
      接下来k行,每行三个整数xi, yi, ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)
      接下来d行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。

    输出格式

      输出一个整数,表示最优送餐方式下所需要花费的成本。

    样例输入

    10 2 3 3
    1 1
    8 8
    1 5 1
    2 3 3
    6 7 2
    1 2
    2 2
    6 8

    样例输出

    29

    评测用例规模与约定

      前30%的评测用例满足:1<=n <=20。
      前60%的评测用例满足:1<=n<=100。
      所有评测用例都满足:1<=n<=1000,1<=m, k, d<=n^2。可能有多个客户在同一个格点上。每个客户的订餐量不超过1000,每个客户所需要的餐都能被送到。

    题解:

    这是一道求无向图多源点最短路径问题,可以利用BFS算法进行求解。可以将给定的几个源点一起压入队列中,同时进行BFS遍历,遇到客户位置时则将花费进行加和。遍历完成时即可得到最终结果。

    $O(n^2)$

     思路来源于这里

    #include<queue>
    #include<stdio.h>
    #include<memory.h>
    using namespace std;
    const int N=1005;
    const int dr[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
    int n,m,k,d,val[N][N];bool vis[N][N];long long ans;
    struct node{
        int x,y,s;
        node(int x=0,int y=0,int s=0):x(x),y(y),s(s){}
    }ord[N*N];
    inline bool illegal(const int &x,const int &y){
        return x<1|y<1||x>n||y>n;
    }
    queue<node>q;
    void bfs(){
        while(!q.empty()){
            node t=q.front();q.pop();
            int cx=t.x,cy=t.y,cs=t.s,nx,ny,ns;
            ans+=val[cx][cy]*cs;
            for(int i=0;i<4;++i){
                nx=cx+dr[i][0];
                ny=cy+dr[i][1];
                ns=cs+1;
                if(illegal(nx,ny)||val[nx][ny]==-1) continue;
                if(!vis[nx][ny]){
                    vis[nx][ny]=1;
                    q.push(node(nx,ny,ns));
                }
            }
        }
    }
    int main(){
        scanf("%d%d%d%d",&n,&m,&k,&d);
        for(int i=0,x,y;i<m;++i) scanf("%d%d",&x,&y),q.push(node(x,y,0)),vis[x][y]=1;
        for(int i=1,x,y,z;i<=k;++i) scanf("%d%d%d",&x,&y,&z),val[x][y]+=z;
        for(int i=0,x,y;i<d;++i) scanf("%d%d",&x,&y),val[x][y]=-1;
        bfs(); 
        printf("%lld",ans);
        return 0;
    }
  • 相关阅读:
    铁乐学Python_Day35_Socket模块3和hmac模块
    铁乐学Python_Day34_Socket模块2和黏包现象
    铁乐学Python_Day33_网络编程Socket模块1
    铁乐学python_day29_模块与包学习4
    铁乐学python_day28_模块学习3
    铁乐学python27_模块学习2
    铁乐学python_md5校验两个文件的一致性
    铁乐学python26_hashlib+configparser+logging模块
    Flask与Ajax
    Javascript与Ajax
  • 原文地址:https://www.cnblogs.com/shenben/p/12813678.html
Copyright © 2011-2022 走看看