zoukankan      html  css  js  c++  java
  • poj 1050 To the Max

    To the Max
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 45906   Accepted: 24276

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
    is in the lower left corner:

    9 2
    -4 1
    -1 8
    and has a sum of 15.

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    Source

    翻译:

    总时间限制: 
    1000ms
     
    内存限制: 
    65536kB
    描述
    已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。

    比如,如下4 * 4的矩阵

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    的最大子矩阵是

    9 2
    -4 1
    -1 8

    这个子矩阵的大小是15。
    输入
    输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
    输出
    输出最大子矩阵的大小。
    样例输入
    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2
    样例输出
    15

    第一种
    /*准备一个数组F[i,j]来存到第i,j格时的矩阵和(类似于前缀和)
    对于一个子矩阵[x1,y1,x2,y2]//x1,x2代表左上角和右下角的横坐标
    有 S[x1,y1,x2,y2] = f[x2,y2] - f[x1-1,y2] - f[x2,y1-1] + f[x1,y1];*/
    #include<cstdio>
    #include<iostream>
    using namespace std;
    #define N 101
    int ans=-0x7f,n,a[N][N],f[N][N];
    int main(){
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++){
                scanf("%d",&a[i][j]);
                f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-1]+a[i][j];
            }
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                for(int k=0;k+i<=n;k++)
                    for(int l=0;l+j<=n;l++){
                        int xx=i+k,yy=j+l;
                        ans=max(ans,f[xx][yy]-f[i-1][yy]-f[xx][j-1]+f[i-1][j-1]);
                    }
        printf("%d
    ",ans);
        return 0;
    }
    第二种
    #include<cstdio>
    #include<iostream>
    using namespace std;
    #define N 101
    int a[N][N],n,ans=0;
    int main(){
        scanf("%d",&n);
        for(int i=1,x;i<=n;i++)
            for(int j=1;j<=n;j++)
                scanf("%d",&x),a[i][j]=a[i-1][j]+x;//列前缀和
        for(int i=1;i<=n;i++)
            for(int j=i;j<=n;j++){
                int tmp=0;
                for(int k=1;k<=n;k++){
                    int num=a[j][k]-a[i-1][k];
                    if(tmp>0) tmp+=num;
                    else tmp=num;
                    ans=max(ans,tmp);
                }
            }
        printf("%d
    ",ans);
        return 0;
    }
    
    
  • 相关阅读:
    将博客搬至CSDN
    05 Python字符串的通用操作
    02 Shell变量
    01 Shell脚本编程入门知识
    windows10安装Python环境
    03 Python数值类型及数字类型详解
    02 变量和语句
    01 交互解释器
    poi.jar处理excel表
    (41)java并发包中的线程池种类及特性介绍
  • 原文地址:https://www.cnblogs.com/shenben/p/5495444.html
Copyright © 2011-2022 走看看