zoukankan      html  css  js  c++  java
  • poj3411

    Paid Roads
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6549   Accepted: 2427

    Description

    A network of m roads connects N cities (numbered from 1 to N). There may be more than one road connecting one city with another. Some of the roads are paid. There are two ways to pay for travel on a paid road i from city ai to city bi:

    • in advance, in a city ci (which may or may not be the same as ai);
    • after the travel, in the city bi.

    The payment is Pi in the first case and Ri in the second case.

    Write a program to find a minimal-cost route from the city 1 to the city N.

    Input

    The first line of the input contains the values of N and m. Each of the following m lines describes one road by specifying the values of aibiciPiRi (1 ≤ ≤ m). Adjacent values on the same line are separated by one or more spaces. All values are integers, 1 ≤ m, N ≤ 10, 0 ≤ Pi , Ri ≤ 100, Pi ≤ Ri (1 ≤ ≤ m).

    Output

    The first and only line of the file must contain the minimal possible cost of a trip from the city 1 to the city N. If the trip is not possible for any reason, the line must contain the word ‘impossible’.

    Sample Input

    4 5
    1 2 1 10 10
    2 3 1 30 50
    3 4 3 80 80
    2 1 2 10 10
    1 3 2 10 50

    Sample Output

    110

    Source

    Northeastern Europe 2002, Western Subregion

    大致题意:

    有n座城市和m(1<=n,m<=10)条路。现在要从城市1到城市n。有些路是要收费的,从a城市到b城市,如果之前到过c城市,那么只要付P的钱,如果没有去过就付R的钱。求的是最少要花多少钱。

    注意:路径是有向的。

    #include<iostream>
    #include<cstring>
    using namespace std;
    struct node{
        int a,b,c,p,r;
    }e[11];//每条道路的付费规则
    int n,m,mincost,vis[11];//城市数//道路数//最小总花费//记录城市的访问次数,每个城市最多经过3次
    void dfs(int now,int fee){//now:当前所在城市,fee:当前方案的费用
        if(now==n&&mincost>fee){
            mincost=fee;return ;
        }
        for(int i=1;i<=m;i++){//枚举道路
            if(now==e[i].a&&vis[e[i].b]<=3){
                vis[e[i].b]++;
                if(vis[e[i].c])
                    dfs(e[i].b,fee+e[i].p);    
                else
                    dfs(e[i].b,fee+e[i].r);
                vis[e[i].b]--;//回溯
            }
        }
    }
    int main(){
        while(cin>>n>>m){
            memset(vis,0,sizeof vis);
            vis[1]=1;//从城市1出发,因此预记录到达1次
            mincost=2000;
            for(int i=1;i<=m;i++)
                cin>>e[i].a>>e[i].b>>e[i].c>>e[i].p>>e[i].r;
            dfs(1,0);
            if(mincost==2000)
                cout<<"impossible
    ";
            else
                cout<<mincost<<endl;
        }
        return 0;
    }
  • 相关阅读:
    求自变量的取值范围时需要注意的角度
    求正弦型函数的解析式
    求三角形面积的最值[范围]
    三角函数对称性[奇偶性]
    2019届高三理科数学选择填空整理
    均值不等式使用变化
    破解正弦型函数参数的取值范围
    构造法求数列通项公式
    累乘法
    Centos中压缩(zip)和解压(unzip)命令
  • 原文地址:https://www.cnblogs.com/shenben/p/5577665.html
Copyright © 2011-2022 走看看