zoukankan      html  css  js  c++  java
  • poj2816

    Popular Cows
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 29799   Accepted: 12090

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.

    Input

    * Line 1: Two space-separated integers, N and M

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow.

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1
    

    Hint

    Cow 3 is the only cow of high popularity.

    Source

    tarjan模板
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<vector>
    #include<stack>
    using namespace std;
    #define N 10010
    vector<int>grap[N];//稀疏图,用邻接表表示图
    stack<int>s;//
    int low[N];//low[u] 为u或u的子树能够追溯到的最早的栈中节点的次序编号  
    int dfn[N];//dfn[u] 为u搜索的次序编号(时间戳)  
    int mark[N];//标记是否在栈中  
    int id[N];//id[i] = j 表示原图的点i缩点后为点j  
    int pd;//顶点的前序编号
    int sd;//记录总共将图缩成多少个点 
    int sum[N];//记录sd编号的有几个点缩成 
    void tarjan(int v){
        low[v]=dfn[v]=++pd;
        s.push(v); 
        mark[v]=1;
        for(int i=0;i<grap[v].size();i++){
            int w=grap[v][i];
            if(!dfn[w]){
                tarjan(w);
                low[v]=min(low[v],low[w]);//v或v的子树能够追溯到的最早的栈中节点的次序编号 
            }
            else if(mark[w]){//(v,w)为后向边
                low[v]=min(low[v],dfn[w]);
            }    
        }
        int u;
        if(low[v]==dfn[v]){//满足强连通分支条件,进行缩点 
            sd++;
            do{
                u=s.top();
                s.pop();
                id[u]=sd;//缩点
                sum[sd]++;
                mark[u]=0;//出栈解除标记
    
            }while(u!=v);
        }
    }
    int main(){
        int n,m,a,b;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++){
            scanf("%d%d",&a,&b);
            grap[a].push_back(b);
        }
        for(int i=1;i<=n;i++){
            if(!dfn[i]) tarjan(i);
        }
        //if(sd==1) {printf("0
    ");return 0;}//如果图已经为强连通图,over 
        int in[N]={0},out[N]={0};
        for(int i=1;i<=n;i++){//求缩点后,各个顶点的出度和入度 
            for(int j=0;j<grap[i].size();j++){
                int k=grap[i][j];
                if(id[i]!=id[k]){
                    in[id[k]]++;
                    out[id[i]]++;
                }
            }
        }
        int ans=0,p=0;
        for(int i=1;i<=sd;i++){
            if(!out[i]){
                ans++;p=i;
            }
        }
        printf("%d
    ",ans==1?sum[p]:0);
        return 0;
    }
  • 相关阅读:
    二叉树的前序、中序、后序遍历
    队列&优先队列
    angularJS 初始化
    angularJS $q
    获取checkbox返回值
    ngRoute
    两个类的装饰器,内置的魔术方法
    super封装property反射
    广度优先和深度优先 父类对子类的约束 多态 鸭子模型
    继承
  • 原文地址:https://www.cnblogs.com/shenben/p/5633373.html
Copyright © 2011-2022 走看看