zoukankan      html  css  js  c++  java
  • POJ3090

    Visible Lattice Points
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7094   Accepted: 4288

    Description

    A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

    Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, yN.

    Input

    The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

    Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

    Output

    For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

    Sample Input

    4
    2
    4
    5
    231

    Sample Output

    1 2 5
    2 4 13
    3 5 21
    4 231 32549

    Source

     
    #include<cstdio>
    using namespace std;
    const int N=1005;
    int T,n,tot,phi[N],prime[N/3];
    bool check[N];
    void prepare(){
        phi[1]=1;n=1000;
        for(int i=2;i<=n;i++){
            if(!check[i]) prime[++tot]=i,phi[i]=i-1;
            for(int j=1;j<=tot&&i*prime[j]<=n;j++){
                check[i*prime[j]]=1;
                if(!(i%prime[j])){phi[i*prime[j]]=phi[i]*prime[j];break;}
                else phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    int main(){
        prepare();
        scanf("%d",&T);
        for(int i=1;i<=T;i++){
            scanf("%d",&n);
            int ans=0;
            for(int j=1;j<=n;j++) ans+=phi[j];
            ans<<=1;ans|=1;
            printf("%d %d %d
    ",i,n,ans);
        }
        return 0;
    }
     
  • 相关阅读:
    MFC知识点总结
    fopen函数打开文件总是返回NULL错误
    四.Windows I/O模型之重叠IO(overlapped)模型
    三.Windows I/O模型之事件选择(WSAEventSelect )模型
    二.Windows I/O模型之异步选择(WSAAsyncSelect)模型
    6.openldap客户端安装
    5.openldap设置用户本身修改密码
    4.openldap创建索引
    3.openldap生成LDAP用户
    2.openldap安装
  • 原文地址:https://www.cnblogs.com/shenben/p/6527953.html
Copyright © 2011-2022 走看看