zoukankan      html  css  js  c++  java
  • POJ3090

    Visible Lattice Points
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7094   Accepted: 4288

    Description

    A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

    Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, yN.

    Input

    The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

    Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

    Output

    For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

    Sample Input

    4
    2
    4
    5
    231

    Sample Output

    1 2 5
    2 4 13
    3 5 21
    4 231 32549

    Source

     
    #include<cstdio>
    using namespace std;
    const int N=1005;
    int T,n,tot,phi[N],prime[N/3];
    bool check[N];
    void prepare(){
        phi[1]=1;n=1000;
        for(int i=2;i<=n;i++){
            if(!check[i]) prime[++tot]=i,phi[i]=i-1;
            for(int j=1;j<=tot&&i*prime[j]<=n;j++){
                check[i*prime[j]]=1;
                if(!(i%prime[j])){phi[i*prime[j]]=phi[i]*prime[j];break;}
                else phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    int main(){
        prepare();
        scanf("%d",&T);
        for(int i=1;i<=T;i++){
            scanf("%d",&n);
            int ans=0;
            for(int j=1;j<=n;j++) ans+=phi[j];
            ans<<=1;ans|=1;
            printf("%d %d %d
    ",i,n,ans);
        }
        return 0;
    }
     
  • 相关阅读:
    LinkedHashSet的实现原理
    HashSet的实现原理
    HashMap的实现原理
    pl/sql 笔记之存储过程、函数、包、触发器(下)
    pl/sql 笔记之基础(上)
    第三方网站微信登录实现
    kafka connect 创建、删除连接器connector(非常重要!!!!)
    Kafka Connect JDBC-Source 源连接器配置属性
    kafka connect(非常重要)
    kafka connect 使用说明
  • 原文地址:https://www.cnblogs.com/shenben/p/6527953.html
Copyright © 2011-2022 走看看