zoukankan      html  css  js  c++  java
  • SPOJ OPTM

    OPTM - Optimal Marks

    no tags 

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.

    For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].

    Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.

    Input

    The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.

    First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.

    Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.

    Output

    For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.

    Example

    Input:
    1
    3 2
    1 2
    2 3
    2
    1 5
    3 100
    
    Output:
    5
    4
    100 
    
     

     Select Code

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    const int N=3e4+5;
    const int M=1e6+5;
    struct edge{int v,next,cap;}e[M];int tot=1,head[N];
    int mark[N],ans[N],dis[N],q[N*10];bool vis[N];
    int cas,n,m,k,S,T,a[N][2];
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    	return x*f;
    }
    inline void add(int x,int y,int z1,int z2=0){
    	e[++tot].v=y;e[tot].cap=z1;e[tot].next=head[x];head[x]=tot;
    	e[++tot].v=x;e[tot].cap=z2;e[tot].next=head[y];head[y]=tot;
    }
    inline bool bfs(){
    	for(int i=S;i<=T;i++) dis[i]=-1;
    	int h=0,t=1;q[t]=S;dis[S]=0;
    	while(h!=t){
    		int x=q[++h];
    		for(int i=head[x];i;i=e[i].next){
    			if(e[i].cap&&dis[e[i].v]==-1){
    				dis[e[i].v]=dis[x]+1;
    				if(e[i].v==T) return 1;
    				q[++t]=e[i].v;
    			}
    		}
    	}
    	return 0;
    }
    int dfs(int x,int f){
    	if(x==T) return f;
    	int used=0,t;
    	for(int i=head[x];i;i=e[i].next){
    		if(e[i].cap&&dis[e[i].v]==dis[x]+1){
    			t=dfs(e[i].v,min(e[i].cap,f));
    			e[i].cap-=t;e[i^1].cap+=t;
    			used+=t;f-=t;
    			if(!f) return used;
    		}
    	}
    	if(!used) dis[x]=-1;
    	return used;
    }
    inline int dinic(){
    	int res=0;
    	while(bfs()) res+=dfs(S,2e9);
    	return res;
    }
    void init(){
    	n=read();m=read();S=0;T=n+1;
    	memset(mark,-1,n+1<<2);
    	for(int i=1;i<=m;i++) a[i][0]=read(),a[i][1]=read();
    	k=read();
    	for(int i=1,x,y;i<=k;i++) x=read(),y=read(),mark[x]=y;
    }
    void DFS(int x,int d){
    	vis[x]=1;
    	ans[x]+=d;
    	for(int i=head[x];i;i=e[i].next){
    		if(!vis[e[i].v]&&e[i].cap){
    			DFS(e[i].v,d);
    		}
    	}
    }
    void work(){
    	memset(ans,0,n+1<<2);
    	int bite=1;
    	for(;;){
    		tot=1;memset(head,0,n+2<<2);
    		for(int i=1;i<=m;i++) add(a[i][0],a[i][1],1,1);
    		bool flag=0;
    		for(int i=1;i<=n;i++){
    			if(~mark[i]){
    				if(mark[i]>=1) flag=1;
    				if(mark[i]&1){
    					add(S,i,2e9);
    				}
    				else{
    					add(i,T,2e9);
    				}
    				mark[i]>>=1;
    			}
    		}
    		if(!flag) break;
    		dinic();
    		memset(vis,0,sizeof vis);
    		DFS(S,bite);bite<<=1;
    	}
    	for(int i=1;i<=n;i++) printf("%d ",ans[i]);putchar('
    ');
    } 
    int main(){
    	cas=read();
    	while(cas--) init(),work();
    	return 0;
    }
     
  • 相关阅读:
    iOS开发时,在Xcode中添加多个Targets进行版本控制
    如何给苹果公司发邮件?
    快快快!27个提升效率的iOS开源库推荐
    史上最全的常用iOS的第三方框架
    Ajax提交与传统表单提交的区别说明
    js原生ajax请求get post笔记
    查看iOS Crash logs
    如何提高iOS开发能力
    iOS 常用的#define合集
    Xcode编译错误和警告汇总
  • 原文地址:https://www.cnblogs.com/shenben/p/6607401.html
Copyright © 2011-2022 走看看