zoukankan      html  css  js  c++  java
  • SPOJ OPTM

    OPTM - Optimal Marks

    no tags 

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.

    For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].

    Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.

    Input

    The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.

    First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.

    Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.

    Output

    For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.

    Example

    Input:
    1
    3 2
    1 2
    2 3
    2
    1 5
    3 100
    
    Output:
    5
    4
    100 
    
     

     Select Code

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    const int N=3e4+5;
    const int M=1e6+5;
    struct edge{int v,next,cap;}e[M];int tot=1,head[N];
    int mark[N],ans[N],dis[N],q[N*10];bool vis[N];
    int cas,n,m,k,S,T,a[N][2];
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    	return x*f;
    }
    inline void add(int x,int y,int z1,int z2=0){
    	e[++tot].v=y;e[tot].cap=z1;e[tot].next=head[x];head[x]=tot;
    	e[++tot].v=x;e[tot].cap=z2;e[tot].next=head[y];head[y]=tot;
    }
    inline bool bfs(){
    	for(int i=S;i<=T;i++) dis[i]=-1;
    	int h=0,t=1;q[t]=S;dis[S]=0;
    	while(h!=t){
    		int x=q[++h];
    		for(int i=head[x];i;i=e[i].next){
    			if(e[i].cap&&dis[e[i].v]==-1){
    				dis[e[i].v]=dis[x]+1;
    				if(e[i].v==T) return 1;
    				q[++t]=e[i].v;
    			}
    		}
    	}
    	return 0;
    }
    int dfs(int x,int f){
    	if(x==T) return f;
    	int used=0,t;
    	for(int i=head[x];i;i=e[i].next){
    		if(e[i].cap&&dis[e[i].v]==dis[x]+1){
    			t=dfs(e[i].v,min(e[i].cap,f));
    			e[i].cap-=t;e[i^1].cap+=t;
    			used+=t;f-=t;
    			if(!f) return used;
    		}
    	}
    	if(!used) dis[x]=-1;
    	return used;
    }
    inline int dinic(){
    	int res=0;
    	while(bfs()) res+=dfs(S,2e9);
    	return res;
    }
    void init(){
    	n=read();m=read();S=0;T=n+1;
    	memset(mark,-1,n+1<<2);
    	for(int i=1;i<=m;i++) a[i][0]=read(),a[i][1]=read();
    	k=read();
    	for(int i=1,x,y;i<=k;i++) x=read(),y=read(),mark[x]=y;
    }
    void DFS(int x,int d){
    	vis[x]=1;
    	ans[x]+=d;
    	for(int i=head[x];i;i=e[i].next){
    		if(!vis[e[i].v]&&e[i].cap){
    			DFS(e[i].v,d);
    		}
    	}
    }
    void work(){
    	memset(ans,0,n+1<<2);
    	int bite=1;
    	for(;;){
    		tot=1;memset(head,0,n+2<<2);
    		for(int i=1;i<=m;i++) add(a[i][0],a[i][1],1,1);
    		bool flag=0;
    		for(int i=1;i<=n;i++){
    			if(~mark[i]){
    				if(mark[i]>=1) flag=1;
    				if(mark[i]&1){
    					add(S,i,2e9);
    				}
    				else{
    					add(i,T,2e9);
    				}
    				mark[i]>>=1;
    			}
    		}
    		if(!flag) break;
    		dinic();
    		memset(vis,0,sizeof vis);
    		DFS(S,bite);bite<<=1;
    	}
    	for(int i=1;i<=n;i++) printf("%d ",ans[i]);putchar('
    ');
    } 
    int main(){
    	cas=read();
    	while(cas--) init(),work();
    	return 0;
    }
     
  • 相关阅读:
    资源合并fis-postpackager-simple插件的使用
    FIS3使用官方例子流程
    FIS常用命令
    SASS输出风格
    Webstorm实时编译SASS和LESS
    如何使用Less?
    DNS预解析dns-prefetch提升页面载入速度优化前端性能
    前端性能优化策略
    利用多域名存储静态资源进行性能优化:网站的静态资源为什么要使用独立域名
    Nginx多域名配置
  • 原文地址:https://www.cnblogs.com/shenben/p/6607401.html
Copyright © 2011-2022 走看看