zoukankan      html  css  js  c++  java
  • SPOJ OPTM

    OPTM - Optimal Marks

    no tags 

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.

    For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].

    Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.

    Input

    The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.

    First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.

    Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.

    Output

    For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.

    Example

    Input:
    1
    3 2
    1 2
    2 3
    2
    1 5
    3 100
    
    Output:
    5
    4
    100 
    
     

     Select Code

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    const int N=3e4+5;
    const int M=1e6+5;
    struct edge{int v,next,cap;}e[M];int tot=1,head[N];
    int mark[N],ans[N],dis[N],q[N*10];bool vis[N];
    int cas,n,m,k,S,T,a[N][2];
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    	return x*f;
    }
    inline void add(int x,int y,int z1,int z2=0){
    	e[++tot].v=y;e[tot].cap=z1;e[tot].next=head[x];head[x]=tot;
    	e[++tot].v=x;e[tot].cap=z2;e[tot].next=head[y];head[y]=tot;
    }
    inline bool bfs(){
    	for(int i=S;i<=T;i++) dis[i]=-1;
    	int h=0,t=1;q[t]=S;dis[S]=0;
    	while(h!=t){
    		int x=q[++h];
    		for(int i=head[x];i;i=e[i].next){
    			if(e[i].cap&&dis[e[i].v]==-1){
    				dis[e[i].v]=dis[x]+1;
    				if(e[i].v==T) return 1;
    				q[++t]=e[i].v;
    			}
    		}
    	}
    	return 0;
    }
    int dfs(int x,int f){
    	if(x==T) return f;
    	int used=0,t;
    	for(int i=head[x];i;i=e[i].next){
    		if(e[i].cap&&dis[e[i].v]==dis[x]+1){
    			t=dfs(e[i].v,min(e[i].cap,f));
    			e[i].cap-=t;e[i^1].cap+=t;
    			used+=t;f-=t;
    			if(!f) return used;
    		}
    	}
    	if(!used) dis[x]=-1;
    	return used;
    }
    inline int dinic(){
    	int res=0;
    	while(bfs()) res+=dfs(S,2e9);
    	return res;
    }
    void init(){
    	n=read();m=read();S=0;T=n+1;
    	memset(mark,-1,n+1<<2);
    	for(int i=1;i<=m;i++) a[i][0]=read(),a[i][1]=read();
    	k=read();
    	for(int i=1,x,y;i<=k;i++) x=read(),y=read(),mark[x]=y;
    }
    void DFS(int x,int d){
    	vis[x]=1;
    	ans[x]+=d;
    	for(int i=head[x];i;i=e[i].next){
    		if(!vis[e[i].v]&&e[i].cap){
    			DFS(e[i].v,d);
    		}
    	}
    }
    void work(){
    	memset(ans,0,n+1<<2);
    	int bite=1;
    	for(;;){
    		tot=1;memset(head,0,n+2<<2);
    		for(int i=1;i<=m;i++) add(a[i][0],a[i][1],1,1);
    		bool flag=0;
    		for(int i=1;i<=n;i++){
    			if(~mark[i]){
    				if(mark[i]>=1) flag=1;
    				if(mark[i]&1){
    					add(S,i,2e9);
    				}
    				else{
    					add(i,T,2e9);
    				}
    				mark[i]>>=1;
    			}
    		}
    		if(!flag) break;
    		dinic();
    		memset(vis,0,sizeof vis);
    		DFS(S,bite);bite<<=1;
    	}
    	for(int i=1;i<=n;i++) printf("%d ",ans[i]);putchar('
    ');
    } 
    int main(){
    	cas=read();
    	while(cas--) init(),work();
    	return 0;
    }
     
  • 相关阅读:
    最新iOS发布App Store详细图文教程~
    介绍一个轻量级iOS安全框架:SSKeyChain
    今天科普一下 苹果开发者账号中:个人、公司、企业账号的区别
    iOS开发:Framework的创建
    JMS 在 SpringBoot 中的使用
    iOS 引入外部字体 otf/ttf/ttc
    公司企业苹果开发者账号中个人、公司企业账号的不同
    Git版本管理
    有关苹果手机下载应用后提示不受信任的企业开发者解决方案:
    尝试一下markdown
  • 原文地址:https://www.cnblogs.com/shenben/p/6607401.html
Copyright © 2011-2022 走看看