zoukankan      html  css  js  c++  java
  • SPOJ OPTM

    OPTM - Optimal Marks

    no tags 

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.

    For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].

    Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.

    Input

    The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.

    First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.

    Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.

    Output

    For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.

    Example

    Input:
    1
    3 2
    1 2
    2 3
    2
    1 5
    3 100
    
    Output:
    5
    4
    100 
    
     

     Select Code

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    const int N=3e4+5;
    const int M=1e6+5;
    struct edge{int v,next,cap;}e[M];int tot=1,head[N];
    int mark[N],ans[N],dis[N],q[N*10];bool vis[N];
    int cas,n,m,k,S,T,a[N][2];
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    	return x*f;
    }
    inline void add(int x,int y,int z1,int z2=0){
    	e[++tot].v=y;e[tot].cap=z1;e[tot].next=head[x];head[x]=tot;
    	e[++tot].v=x;e[tot].cap=z2;e[tot].next=head[y];head[y]=tot;
    }
    inline bool bfs(){
    	for(int i=S;i<=T;i++) dis[i]=-1;
    	int h=0,t=1;q[t]=S;dis[S]=0;
    	while(h!=t){
    		int x=q[++h];
    		for(int i=head[x];i;i=e[i].next){
    			if(e[i].cap&&dis[e[i].v]==-1){
    				dis[e[i].v]=dis[x]+1;
    				if(e[i].v==T) return 1;
    				q[++t]=e[i].v;
    			}
    		}
    	}
    	return 0;
    }
    int dfs(int x,int f){
    	if(x==T) return f;
    	int used=0,t;
    	for(int i=head[x];i;i=e[i].next){
    		if(e[i].cap&&dis[e[i].v]==dis[x]+1){
    			t=dfs(e[i].v,min(e[i].cap,f));
    			e[i].cap-=t;e[i^1].cap+=t;
    			used+=t;f-=t;
    			if(!f) return used;
    		}
    	}
    	if(!used) dis[x]=-1;
    	return used;
    }
    inline int dinic(){
    	int res=0;
    	while(bfs()) res+=dfs(S,2e9);
    	return res;
    }
    void init(){
    	n=read();m=read();S=0;T=n+1;
    	memset(mark,-1,n+1<<2);
    	for(int i=1;i<=m;i++) a[i][0]=read(),a[i][1]=read();
    	k=read();
    	for(int i=1,x,y;i<=k;i++) x=read(),y=read(),mark[x]=y;
    }
    void DFS(int x,int d){
    	vis[x]=1;
    	ans[x]+=d;
    	for(int i=head[x];i;i=e[i].next){
    		if(!vis[e[i].v]&&e[i].cap){
    			DFS(e[i].v,d);
    		}
    	}
    }
    void work(){
    	memset(ans,0,n+1<<2);
    	int bite=1;
    	for(;;){
    		tot=1;memset(head,0,n+2<<2);
    		for(int i=1;i<=m;i++) add(a[i][0],a[i][1],1,1);
    		bool flag=0;
    		for(int i=1;i<=n;i++){
    			if(~mark[i]){
    				if(mark[i]>=1) flag=1;
    				if(mark[i]&1){
    					add(S,i,2e9);
    				}
    				else{
    					add(i,T,2e9);
    				}
    				mark[i]>>=1;
    			}
    		}
    		if(!flag) break;
    		dinic();
    		memset(vis,0,sizeof vis);
    		DFS(S,bite);bite<<=1;
    	}
    	for(int i=1;i<=n;i++) printf("%d ",ans[i]);putchar('
    ');
    } 
    int main(){
    	cas=read();
    	while(cas--) init(),work();
    	return 0;
    }
     
  • 相关阅读:
    牛客网在线编程:解救小易
    牛客网在线编程:身份证分组
    牛客网在线编程:优雅的点
    用FlexSlider制作支付宝2013版幻灯片演示插件
    Mysql Join语法解析与性能分析详解
    SQL Server 动态行转列(参数化表名、分组列、行转列字段、字段
    jQuery 分页插件 jqPagination的使用
    Android图片异步加载之Android-Universal-Image-Loader
    C#随机函数random()典型用法集锦
    CSS自适应布局(左右固定 中间自适应或者右侧固定 左侧自适应)
  • 原文地址:https://www.cnblogs.com/shenben/p/6607401.html
Copyright © 2011-2022 走看看