zoukankan      html  css  js  c++  java
  • SPOJ OPTM

    OPTM - Optimal Marks

    no tags 

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.

    For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].

    Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.

    Input

    The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.

    First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.

    Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.

    Output

    For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.

    Example

    Input:
    1
    3 2
    1 2
    2 3
    2
    1 5
    3 100
    
    Output:
    5
    4
    100 
    
     

     Select Code

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    const int N=3e4+5;
    const int M=1e6+5;
    struct edge{int v,next,cap;}e[M];int tot=1,head[N];
    int mark[N],ans[N],dis[N],q[N*10];bool vis[N];
    int cas,n,m,k,S,T,a[N][2];
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    	return x*f;
    }
    inline void add(int x,int y,int z1,int z2=0){
    	e[++tot].v=y;e[tot].cap=z1;e[tot].next=head[x];head[x]=tot;
    	e[++tot].v=x;e[tot].cap=z2;e[tot].next=head[y];head[y]=tot;
    }
    inline bool bfs(){
    	for(int i=S;i<=T;i++) dis[i]=-1;
    	int h=0,t=1;q[t]=S;dis[S]=0;
    	while(h!=t){
    		int x=q[++h];
    		for(int i=head[x];i;i=e[i].next){
    			if(e[i].cap&&dis[e[i].v]==-1){
    				dis[e[i].v]=dis[x]+1;
    				if(e[i].v==T) return 1;
    				q[++t]=e[i].v;
    			}
    		}
    	}
    	return 0;
    }
    int dfs(int x,int f){
    	if(x==T) return f;
    	int used=0,t;
    	for(int i=head[x];i;i=e[i].next){
    		if(e[i].cap&&dis[e[i].v]==dis[x]+1){
    			t=dfs(e[i].v,min(e[i].cap,f));
    			e[i].cap-=t;e[i^1].cap+=t;
    			used+=t;f-=t;
    			if(!f) return used;
    		}
    	}
    	if(!used) dis[x]=-1;
    	return used;
    }
    inline int dinic(){
    	int res=0;
    	while(bfs()) res+=dfs(S,2e9);
    	return res;
    }
    void init(){
    	n=read();m=read();S=0;T=n+1;
    	memset(mark,-1,n+1<<2);
    	for(int i=1;i<=m;i++) a[i][0]=read(),a[i][1]=read();
    	k=read();
    	for(int i=1,x,y;i<=k;i++) x=read(),y=read(),mark[x]=y;
    }
    void DFS(int x,int d){
    	vis[x]=1;
    	ans[x]+=d;
    	for(int i=head[x];i;i=e[i].next){
    		if(!vis[e[i].v]&&e[i].cap){
    			DFS(e[i].v,d);
    		}
    	}
    }
    void work(){
    	memset(ans,0,n+1<<2);
    	int bite=1;
    	for(;;){
    		tot=1;memset(head,0,n+2<<2);
    		for(int i=1;i<=m;i++) add(a[i][0],a[i][1],1,1);
    		bool flag=0;
    		for(int i=1;i<=n;i++){
    			if(~mark[i]){
    				if(mark[i]>=1) flag=1;
    				if(mark[i]&1){
    					add(S,i,2e9);
    				}
    				else{
    					add(i,T,2e9);
    				}
    				mark[i]>>=1;
    			}
    		}
    		if(!flag) break;
    		dinic();
    		memset(vis,0,sizeof vis);
    		DFS(S,bite);bite<<=1;
    	}
    	for(int i=1;i<=n;i++) printf("%d ",ans[i]);putchar('
    ');
    } 
    int main(){
    	cas=read();
    	while(cas--) init(),work();
    	return 0;
    }
     
  • 相关阅读:
    4-8(十五)性能测试流程
    数据库面试题(一)多表查询
    4-8(十四) jmeter 性能分析从哪几个方面
    4-8(十二)Jmeter+Ant+Jenkins定时构建
    4-8(十一)Jmeter自动化集成工具Ant的安装
    4-8(十)Jmeter 分布式测试
    4-8(九)Jmeter性能测试之阶梯式场景(负载测试)、波浪式场景(压力测试)
    4-8(八)Jmeter性能测试插件jpgc的安装
    4-8(六)Jmeter 脚本录制后调优
    6分钟演示,15种排序算法(视频)
  • 原文地址:https://www.cnblogs.com/shenben/p/6607401.html
Copyright © 2011-2022 走看看