X mod f(x)
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3020 Accepted Submission(s): 1182
Problem Description
Here is a function f(x):
int f ( int x ) {
if ( x == 0 ) return 0;
return f ( x / 10 ) + x % 10;
}
Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 109), how many integer x that mod f(x) equal to 0.
Input
The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
Each test case has two integers A, B.
Each test case has two integers A, B.
Output
For each test case, output only one line containing the case number and an integer indicated the number of x.
Sample Input
2
1 10
11 20
Sample Output
Case 1: 10
Case 2: 3
Author
WHU
Source
Recommend
zhuyuanchen520 | We have carefully selected several similar problems for you: 4385 4383 4388 4387 4386
由于f(x)最大就是81,所以可以算对于1-81每一个数都求一下就可以
#include<cstdio> #include<cstring> using namespace std; int cas,T,bits[20]; int f[11][82][82][82]; int dfs(int pos,int mod,int x,int sum,bool lim){ if(!pos){return x==sum&&!mod;} int &res=f[pos][mod][x][sum],ans=0; if(!lim&&(~res)) return res; int up=!lim?9:bits[pos]; for(int i=0;i<=up;i++){ ans+=dfs(pos-1,(mod*10+i)%x,x,sum+i,lim&&i==bits[pos]); } if(!lim) res=ans; return ans; } int solve(int x){ int len=0;int ans=0; for(;x;x/=10) bits[++len]=x%10; for(int fx=1;fx<=81;fx++) ans+=dfs(len,0,fx,0,1); return ans; } int main(){ int l,r; memset(f,-1,sizeof f); for(scanf("%d",&T);T--;){ scanf("%d%d",&l,&r); printf("Case %d: %d ",++cas,solve(r)-solve(l-1)); } return 0; }