zoukankan      html  css  js  c++  java
  • hdu4389 X mod f(x)[数位dp]

    X mod f(x)

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3020    Accepted Submission(s): 1182


    Problem Description
    Here is a function f(x):
       int f ( int x ) {
        if ( x == 0 ) return 0;
        return f ( x / 10 ) + x % 10;
       }

       Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 109), how many integer x that mod f(x) equal to 0.
     
    Input
       The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
       Each test case has two integers A, B.
     
    Output
       For each test case, output only one line containing the case number and an integer indicated the number of x.
     
    Sample Input
    2 1 10 11 20
     
    Sample Output
    Case 1: 10 Case 2: 3
     
    Author
    WHU
     
    Source
     
    Recommend
    zhuyuanchen520   |   We have carefully selected several similar problems for you:  4385 4383 4388 4387 4386 
     

    由于f(x)最大就是81,所以可以算对于1-81每一个数都求一下就可以

    #include<cstdio>
    #include<cstring>
    using namespace std;
    int cas,T,bits[20];
    int f[11][82][82][82];
    int dfs(int pos,int mod,int x,int sum,bool lim){
        if(!pos){return x==sum&&!mod;}
        int &res=f[pos][mod][x][sum],ans=0;
        if(!lim&&(~res)) return res;
        int up=!lim?9:bits[pos];
        for(int i=0;i<=up;i++){
            ans+=dfs(pos-1,(mod*10+i)%x,x,sum+i,lim&&i==bits[pos]);
        }
        if(!lim) res=ans;
        return ans;
    }
    int solve(int x){
        int len=0;int ans=0;
        for(;x;x/=10) bits[++len]=x%10;
        for(int fx=1;fx<=81;fx++) ans+=dfs(len,0,fx,0,1);
        return ans;
    }
    int main(){
        int l,r;
        memset(f,-1,sizeof f);
        for(scanf("%d",&T);T--;){
            scanf("%d%d",&l,&r);
            printf("Case %d: %d
    ",++cas,solve(r)-solve(l-1));
        }
        return 0;
    }
  • 相关阅读:
    文件操作2
    操作文件1
    标准库(一):collections之orderedDict
    类的模板导入
    类的继承
    类内成员和方法的使用
    redis高可用
    oracle数据库优化
    如何捕获oracle数据库异常
    oracle之语句触发器创建
  • 原文地址:https://www.cnblogs.com/shenben/p/6708043.html
Copyright © 2011-2022 走看看