zoukankan      html  css  js  c++  java
  • hdu3709 Balanced Number[数位dp]

    Balanced Number

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 5376    Accepted Submission(s): 2571


    Problem Description
    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
    to calculate the number of balanced numbers in a given range [x, y].
     
    Input
    The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).
     
    Output
    For each case, print the number of balanced numbers in the range [x, y] in a line.
     
    Sample Input
    2 0 9 7604 24324
     
    Sample Output
    10 897
     
    Author
    GAO, Yuan
     
    Source

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    typedef long long ll;
    const int N=20;
    ll l,r,f[N][N][N*101];int T,bits[N];
    ll dfs(int pos,int x,int st,bool lim){
        if(!pos) return !st;
        if(st<0) return 0;
        ll &res=f[pos][x][st],ans=0;
        if(!lim&&(~res)) return res;
        int up=!lim?9:bits[pos];
        for(int i=0;i<=up;i++){
            ans+=dfs(pos-1,x,st+i*(pos-x),lim&&i==bits[pos]);
        }
        if(!lim) res=ans;
        return ans;
    }
    ll solve(ll x){
        if(x<0) return 0;
        int len=0;ll ans=0;
        for(;x;x/=10) bits[++len]=x%10;
        for(int i=1;i<=len;i++) ans+=dfs(len,i,0,1);
        return ans-len+1;
    }
    int main(){
        memset(f,-1,sizeof f);
        for(scanf("%d",&T);T--;)
            scanf("%I64d%I64d",&l,&r),
            printf("%I64d
    ",solve(r)-solve(l-1));
        return 0;
    }
  • 相关阅读:
    Winform 打包,卸载程序制作获取ProductCode
    委托/事件的重写
    反序列化无法找到程序集
    Control.Invoke注意事项
    操作config文件
    MemoEdit自动滚动到结尾
    读取局域网内的共享文件
    命令行卸载程序
    获取执行程序的路径
    SCSF 系列:使用 Visualizer 监控 SCSF 运行状态
  • 原文地址:https://www.cnblogs.com/shenben/p/6708758.html
Copyright © 2011-2022 走看看