zoukankan      html  css  js  c++  java
  • hdu5411 CRB and Puzzle[矩阵优化dp]

    CRB and Puzzle

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1177    Accepted Submission(s): 468


    Problem Description
    CRB is now playing Jigsaw Puzzle.
    There are N kinds of pieces with infinite supply.
    He can assemble one piece to the right side of the previously assembled one.
    For each kind of pieces, only restricted kinds can be assembled with.
    How many different patterns he can assemble with at most M pieces? (Two patterns P and Q are considered different if their lengths are different or there exists an integer j such that j-th piece of P is different from corresponding piece of Q.)
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
    The first line contains two integers N, M denoting the number of kinds of pieces and the maximum number of moves.
    Then N lines follow. i-th line is described as following format.
    a_{1} a_{2} ... a_{k}
    Here k is the number of kinds which can be assembled to the right of the i-th kind. Next k integers represent each of them.
    1 ≤ T ≤ 20
    1 ≤ N ≤ 50
    1 ≤ M ≤ 10^5
    0 ≤ k ≤ N
    1 ≤ a_{1} < a_{2} < … < a_{k} ≤ N

     
    Output
    For each test case, output a single integer - number of different patterns modulo 2015.
     
    Sample Input
    1 3 2 1 2 1 3 0
     
    Sample Output
    6
    Hint
    possible patterns are ∅, 1, 2, 3, 1→2, 2→3
     
    Author
    KUT(DPRK)
     
    Source
     
    Recommend
    wange2014

    同样的题:不同的写法,却得不出相同的答案。poj3233 Matrix Power Series

    望大佬给蒟蒻答疑

     Select Code

    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int mod=2015;
    struct matrix{
    	int s[102][102];
    	matrix(){
    		memset(s,0,sizeof s);
    	}
    }A,F;int n,m,T;int ans;
    matrix operator *(const matrix &a,const matrix &b){
    	matrix c;
    	for(int i=0;i<n;i++){
    		for(int j=0;j<n;j++){
    			for(int k=0;k<n;k++){
    				c.s[i][j]+=a.s[i][k]*b.s[k][j];
    			}
    			c.s[i][j]%=mod;
    		}
    	}
    	return c;
    }
    matrix fpow(matrix a,int p){
    	matrix res;
    	for(int i=0;i<n;i++) res.s[i][i]=1;
    	for(;p;p>>=1,a=a*a) if(p&1) res=res*a;
    	return res;
    }
    int main(){
    	for(scanf("%d",&T);T--;){
    		scanf("%d%d",&n,&m);
    		matrix A;
    		for(int i=0,k,x;i<n;i++){
    			scanf("%d",&k);
    			while(k--){
    				scanf("%d",&x);x--;
    				A.s[i][x]=1;
    			}
    		}
    		for(int i=0;i<n;i++) A.s[i][i+n]=A.s[i+n][i+n]=1;
    		n<<=1;
    		A=fpow(A,m);
    		n>>=1;
    		ans=1;
    		for(int i=0;i<n;i++){
            	for(int j=n;j<2*n;j++){
            		ans+=A.s[i][j];
    			}
    		}
    		ans%=mod;
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
  • 相关阅读:
    python count函数
    kubenetes服务发现
    k8s网络
    k8s创建pod流程
    openstack创建虚拟流程、各组件介绍
    生产者消费者问题
    Date类和Calendar类
    Timer定时器
    Java中的克隆
    注解
  • 原文地址:https://www.cnblogs.com/shenben/p/6726629.html
Copyright © 2011-2022 走看看