zoukankan      html  css  js  c++  java
  • 摘:数据结构各种算法实现(C++模板)

    目  录

    1、顺序表. 1

    Seqlist.h 1

    Test.cpp 6

    2、单链表. 8

    ListNode.h 8

    SingleList.h 10

    test.cpp 20

    3、双向链表. 22

    NodeList.h 22

    DoubleList.h 24

    Test.cpp 34

    4、循环链表. 36

    ListNode.h 36

    CircularList.h 37

    Test.cpp 47

    5、顺序栈. 49

    SeqStack.h 49

    Test.cpp 54

    6、链式栈. 55

    StackNode.h 55

    LinkStack.h 56

    Test.cpp 60

    7、顺序队列. 62

    SeqQueue.h 63

    Test.cpp 68

    8、链式队列. 70

    QueueNode.h 70

    LinkQueue.h 71

    Test.cpp 75

    9、优先级队列. 77

    QueueNode.h 77

    Compare.h 78

    PriorityQueue.h 80

    Test.cpp 85

    10、串. 88

    MyString.h 88

    MyString.cpp 90

    test.cpp 101

    11、二叉树. 104

    BinTreeNode.h 104

    BinaryTree.h 112

    Test.cpp 124

    12、线索二叉树. 126

    ThreadNode.h 126

    ThreadTree.h 128

    ThreadInorderIterator.h 128

    test.cpp 139

    13、堆. 140

    MinHeap.h 140

    test.cpp 147

    14、哈夫曼树. 149

    BinTreeNode.h 149

    BinaryTree.h 151

    MinHeap.h 156

    Huffman.h 161

    Test.cpp 163

    15、树. 164

    QueueNode.h 164

    LinkQueue.h 165

    TreeNode.h 169

    Tree.h 170

    test.cpp 187

    16、B+树. 189

    BTreeNode.h 189

    BTree.h 192

    test.cpp 215

    17、图. 217

    MinHeap.h 217

    Edge.h 222

    Vertex.h 223

    Graph.h 224

    test.cpp 246

    18、排序. 249

    Data.h 249

    QueueNode.h 255

    LinkQueue.h 259

    Sort.h 263

    test.cpp 278

    1、顺序表

    Seqlist.h

    const int DefaultSize=100;

     

    template <typename Type> class SeqList{

    public:

       SeqList(int sz=DefaultSize)

         :m_nmaxsize(sz),m_ncurrentsize(-1){

         if(sz>0){

            m_elements=new Type[m_nmaxsize];

         }

       }

       ~SeqList(){

         delete[] m_elements;

       }

       int Length() const{            //get the length

         return m_ncurrentsize+1;

       }

       int Find(Type x) const;          //find the position of x

       int IsElement(Type x) const;     //is it in the list

       int Insert(Type x,int i);      //insert data

       int Remove(Type x);            //delete data

       int IsEmpty(){

         return m_ncurrentsize==-1;

       }

       int IsFull(){

         return m_ncurrentsize==m_nmaxsize-1;

       }

       Type Get(int i){            //get the ith data

         return i<0||i>m_ncurrentsize?(cout<<"can't find the element"<<endl,0):m_elements[i];

       }

       void Print();

     

    private:

       Type *m_elements;

       const int m_nmaxsize;

       int m_ncurrentsize;

    };

     

    template <typename Type> int SeqList<Type>::Find(Type x) const{

       for(int i=0;i<m_ncurrentsize;i++)

         if(m_elements[i]==x)

            return i;

       cout<<"can't find the element you want to find"<<endl;

       return -1;

    }

     

    template <typename Type> int SeqList<Type>::IsElement(Type x) const{

       if(Find(x)==-1)

         return 0;

       return 1;

    }

     

    template <typename Type> int SeqList<Type>::Insert(Type x, int i){

       if(i<0||i>m_ncurrentsize+1||m_ncurrentsize==m_nmaxsize-1){

         cout<<"the operate is illegal"<<endl;

         return 0;

       }

       m_ncurrentsize++;

       for(int j=m_ncurrentsize;j>i;j--){

         m_elements[j]=m_elements[j-1];

       }

       m_elements[i]=x;

       return 1;

    }

     

    template <typename Type> int SeqList<Type>::Remove(Type x){

       int size=m_ncurrentsize;

       for(int i=0;i<m_ncurrentsize;){

         if(m_elements[i]==x){

            for(int j=i;j<m_ncurrentsize;j++){

              m_elements[j]=m_elements[j+1];

            }

            m_ncurrentsize--;

            continue;

         }

         i++;

       }

       if(size==m_ncurrentsize){

         cout<<"can't find the element you want to remove"<<endl;

         return 0;

       }

       return 1;

    }

     

    template <typename Type> void SeqList<Type>::Print(){

       for(int i=0;i<=m_ncurrentsize;i++)

         cout<<i+1<<": "<<m_elements[i]<<endl;

       cout<<endl<<endl;

    }

     

    Test.cpp

     

    #include <iostream>

    #include "SeqList.h"

     

    using namespace std;

     

    int main()

    {

       SeqList<int> test(15);

       int array[15]={2,5,8,1,9,9,7,6,4,3,2,9,7,7,9};

       for(int i=0;i<15;i++){

         test.Insert(array[i],0);

    }

       test.Insert(1,0);

       cout<<(test.Find(0)?"can't be found ":"Be found ")<< 0 << endl<<endl;

       test.Remove(7);

       test.Print();

       test.Remove(9);

       test.Print();

       test.Remove(0);

       test.Print();

       return 0;

    }

    2、 单链表

    ListNode.h

    template<typename Type> class SingleList;

     

    template<typename Type> class ListNode{

    private:

       friend typename SingleList<Type>;

     

       ListNode():m_pnext(NULL){}

       ListNode(const Type item,ListNode<Type> *next=NULL):m_data(item),m_pnext(next){}

       ~ListNode(){

         m_pnext=NULL;

       }

     

    public:

       Type GetData();

       friend ostream& operator<< <Type>(ostream& ,ListNode<Type>&);

     

    private:

       Type m_data;

       ListNode *m_pnext;

    };

     

    template<typename Type> Type ListNode<Type>::GetData(){

       return this->m_data;

    }

     

    template<typename Type> ostream& operator<<(ostream& os,ListNode<Type>& out){

       os<<out.m_data;

       return os;

    }

     

     

    SingleList.h

     

    #include "ListNode.h"

     

    template<typename Type> class SingleList{

    public:

       SingleList():head(new ListNode<Type>()){}

       ~SingleList(){

         MakeEmpty();

         delete head;

       }

     

    public:

       void MakeEmpty();                       //make the list empty

       int Length();                           //get the length

       ListNode<Type> *Find(Type value,int n); //find thd nth data which is equal to value

       ListNode<Type> *Find(int n);            //find the nth data

       bool Insert(Type item,int n=0);         //insert the data in the nth position

       Type Remove(int n=0);                   //remove the nth data

       bool RemoveAll(Type item);              //remove all the data which is equal to item

       Type Get(int n);                        //get the nth data

       void Print();                           //print the list

     

    private:

       ListNode<Type> *head;

    };

     

    template<typename Type> void SingleList<Type>::MakeEmpty(){

       ListNode<Type> *pdel;

       while(head->m_pnext!=NULL){

         pdel=head->m_pnext;

         head->m_pnext=pdel->m_pnext;

         delete pdel;

       }

    }

     

    template<typename Type> int SingleList<Type>::Length(){

       ListNode<Type> *pmove=head->m_pnext;

       int count=0;

       while(pmove!=NULL){

         pmove=pmove->m_pnext;

         count++;

       }

       return count;

    }

     

    template<typename Type> ListNode<Type>* SingleList<Type>::Find(int n){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         return NULL;

       }

       ListNode<Type> *pmove=head->m_pnext;

       for(int i=0;i<n&&pmove;i++){

         pmove=pmove->m_pnext;

       }

       if(pmove==NULL){

         cout<<"The n is out of boundary"<<endl;

         return NULL;

       }

       return pmove;

    }

     

    template<typename Type> ListNode<Type>* SingleList<Type>::Find(Type value,int n){

       if(n<1){

         cout<<"The n is illegal"<<endl;

         return NULL;

       }

       ListNode<Type> *pmove=head;

       int count=0;

       while(count!=n&&pmove){

         pmove=pmove->m_pnext;

         if(pmove->m_data==value){

            count++;

         }

     

       }

       if(pmove==NULL){

         cout<<"can't find the element"<<endl;

         return NULL;

       }

       return pmove;

    }

     

    template<typename Type> bool SingleList<Type>::Insert(Type item, int n){

       if(n<0){

         cout<<"The n is illegal"<<endl;

         return 0;

       }

       ListNode<Type> *pmove=head;

       ListNode<Type> *pnode=new ListNode<Type>(item);

       if(pnode==NULL){

         cout<<"Application error!"<<endl;

         return 0;

       }

       for(int i=0;i<n&&pmove;i++){

         pmove=pmove->m_pnext;

       }

       if(pmove==NULL){

         cout<<"the n is illegal"<<endl;

         return 0;

       }

       pnode->m_pnext=pmove->m_pnext;

       pmove->m_pnext=pnode;

       return 1;

    }

     

    template<typename Type> bool SingleList<Type>::RemoveAll(Type item){

       ListNode<Type> *pmove=head;

       ListNode<Type> *pdel=head->m_pnext;

       while(pdel!=NULL){

         if(pdel->m_data==item){

            pmove->m_pnext=pdel->m_pnext;

            delete pdel;

            pdel=pmove->m_pnext;

            continue;

         }

         pmove=pmove->m_pnext;

         pdel=pdel->m_pnext;

       }

       return 1;

    }

     

    template<typename Type> Type SingleList<Type>::Remove(int n){

       if(n<0){

         cout<<"can't find the element"<<endl;

         exit(1);

       }

       ListNode<Type> *pmove=head,*pdel;

       for(int i=0;i<n&&pmove->m_pnext;i++){

         pmove=pmove->m_pnext;

       }

       if(pmove->m_pnext==NULL){

         cout<<"can't find the element"<<endl;

         exit(1);

       }

       pdel=pmove->m_pnext;

       pmove->m_pnext=pdel->m_pnext;

       Type temp=pdel->m_data;

       delete pdel;

       return temp;

    }

     

    template<typename Type> Type SingleList<Type>::Get(int n){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         exit(1);

       }

       ListNode<Type> *pmove=head->m_pnext;

       for(int i=0;i<n;i++){

         pmove=pmove->m_pnext;

         if(NULL==pmove){

            cout<<"The n is out of boundary"<<endl;

            exit(1);

         }

       }

       return pmove->m_data;

    }

     

    template<typename Type> void SingleList<Type>::Print(){

       ListNode<Type> *pmove=head->m_pnext;

       cout<<"head";

       while(pmove){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->over"<<endl<<endl<<endl;

    }

     

    test.cpp

    #include <iostream>

    using namespace std;

     

    #include "SingleList.h"

     

     

    int main()

    {

       SingleList<int> list;

       for(int i=0;i<20;i++){

         list.Insert(i*3,i);

       }

       for(int i=0;i<5;i++){

         list.Insert(3,i*3);

       }

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       list.Remove(5);

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       list.RemoveAll(3);

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       cout<<"The third element is "<<list.Get(3)<<endl;

     

       cout<<*list.Find(18,1)<<endl;

     

       list.Find(100);

     

       list.MakeEmpty();

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       return 0;

    }

     

    3、 双向链表

    NodeList.h

    template<typename Type> class DoublyList;

     

    template<typename Type> class ListNode{

    private:

       friend class DoublyList<Type>;

       ListNode():m_pprior(NULL),m_pnext(NULL){}

       ListNode(const Type item,ListNode<Type> *prior=NULL,ListNode<Type> *next=NULL)

         :m_data(item),m_pprior(prior),m_pnext(next){}

       ~ListNode(){

         m_pprior=NULL;

         m_pnext=NULL;

       }

    public:

       Type GetData();

    private:

       Type m_data;

       ListNode *m_pprior;

       ListNode *m_pnext;

    };

     

    template<typename Type> Type ListNode<Type>::GetData(){

       return this->m_data;

    }

     

    DoubleList.h

    #include "ListNode.h"

     

    template<typename Type> class DoublyList{

    public:

       DoublyList():head(new ListNode<Type>()){    //the head node point to itself

         head->m_pprior=head;

         head->m_pnext=head;

       }

       ~DoublyList(){

         MakeEmpty();

         delete head;

       }

     

    public:

       void MakeEmpty();   //make the list empty

       int Length();       //get the length of the list

       ListNode<Type> *Find(int n=0);  //find the nth data

       ListNode<Type> * FindData(Type item);   //find the data which is equal to item

       bool Insert(Type item,int n=0);     //insert item in the nth data

       Type Remove(int n=0);   //delete the nth data

       Type Get(int n=0);      //get the nth data

       void Print();           //print the list

     

    private:

       ListNode<Type> *head;

    };

     

    template<typename Type> void DoublyList<Type>::MakeEmpty(){

       ListNode<Type> *pmove=head->m_pnext,*pdel;

       while(pmove!=head){

         pdel=pmove;

         pmove=pdel->m_pnext;

         delete pdel;

       }

       head->m_pnext=head;

       head->m_pprior=head;

    }

     

    template<typename Type> int DoublyList<Type>::Length(){

       ListNode<Type> *pprior=head->m_pprior,*pnext=head->m_pnext;

       int count=0;

       while(1){

         if(pprior->m_pnext==pnext){

            break;

         }

         if(pprior==pnext&&pprior!=head){

            count++;

            break;

         }

         count+=2;

         pprior=pprior->m_pprior;

         pnext=pnext->m_pnext;

       }

       return count;

    }

     

    template<typename Type> ListNode<Type>* DoublyList<Type>::Find(int n = 0){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         return NULL;

       }

       ListNode<Type> *pmove=head->m_pnext;

       for(int i=0;i<n;i++){

         pmove=pmove->m_pnext;

         if(pmove==head){

            cout<<"The n is out of boundary"<<endl;

            return NULL;

         }

       }

       return pmove;

    }

     

    template<typename Type> bool DoublyList<Type>::Insert(Type item,int n){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         return 0;

       }

       ListNode<Type> *newnode=new ListNode<Type>(item),*pmove=head;

       if(newnode==NULL){

         cout<<"Application Erorr!"<<endl;

         exit(1);

       }

       for(int i=0;i<n;i++){   //find the position for insert

         pmove=pmove->m_pnext;

         if(pmove==head){

            cout<<"The n is out of boundary"<<endl;

            return 0;

         }

       }

     

        //insert the data

       newnode->m_pnext=pmove->m_pnext;

       newnode->m_pprior=pmove;

       pmove->m_pnext=newnode;

       newnode->m_pnext->m_pprior=newnode;

       return 1;

    }

     

    template<typename Type> Type DoublyList<Type>::Remove(int n = 0){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         exit(1);

       }

       ListNode<Type> *pmove=head,*pdel;

       for(int i=0;i<n;i++){   //find the position for delete

         pmove=pmove->m_pnext;

         if(pmove==head){

            cout<<"The n is out of boundary"<<endl;

            exit(1);

         }

       }

     

        //delete the data

       pdel=pmove;

       pmove->m_pprior->m_pnext=pdel->m_pnext;

       pmove->m_pnext->m_pprior=pdel->m_pprior;

       Type temp=pdel->m_data;

       delete pdel;

       return temp;

    }

     

    template<typename Type> Type DoublyList<Type>::Get(int n = 0){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         exit(1);

       }

       ListNode<Type> *pmove=head;

       for(int i=0;i<n;i++){

         pmove=pmove->m_pnext;

         if(pmove==head){

            cout<<"The n is out of boundary"<<endl;

            exit(1);

         }

       }

       return pmove->m_data;

    }

     

    template<typename Type> void DoublyList<Type>::Print(){

       ListNode<Type> *pmove=head->m_pnext;

       cout<<"head";

       while(pmove!=head){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->over"<<endl<<endl<<endl;

     

    }

     

    template<typename Type> ListNode<Type>* DoublyList<Type>::FindData(Type item){

       ListNode<Type> *pprior=head->m_pprior,*pnext=head->m_pnext;

       while(pprior->m_pnext!=pnext && pprior!=pnext){ //find the data in the two direction

         if(pprior->m_data==item){

            return pprior;

         }

         if(pnext->m_data==item){

            return pnext;

         }

         pprior=pprior->m_pprior;

         pnext=pnext->m_pnext;

       }

       cout<<"can't find the element"<<endl;

       return NULL;

    }

     

    Test.cpp

    #include <iostream>

    #include "DoublyList.h"

     

    using namespace std;

     

    int main()

    {

       DoublyList<int> list;

       for(int i=0;i<20;i++){

         list.Insert(i*3,i);

       }

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

       for(int i=0;i<5;i++){

         list.Insert(3,i*3);

       }

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       list.Remove(5);

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       cout<<list.FindData(54)->GetData()<<endl;

     

       cout<<"The third element is "<<list.Get(3)<<endl;

     

       list.MakeEmpty();

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

     

       return 0;

    }

     

    4、 循环链表

    ListNode.h

    template<typename Type> class CircularList;

     

    template<typename Type> class ListNode{

    private:

       friend class CircularList<Type>;

       ListNode():m_pnext(NULL){}

       ListNode(const Type item,ListNode<Type> *next=NULL):m_data(item),m_pnext(next){}

       ~ListNode(){

         m_pnext=NULL;

       }

      

    private:

       Type m_data;

       ListNode *m_pnext;

    };

     

    CircularList.h

    #include "ListNode.h"

     

    template<typename Type> class CircularList{

    public:

       CircularList():head(new ListNode<Type>()){

         head->m_pnext=head;

       }

       ~CircularList(){

         MakeEmpty();

         delete head;

       }

    public:

       void MakeEmpty(); //clear the list

       int Length();     //get the length

       ListNode<Type> *Find(Type value,int n);  //find the nth data which is equal to value

       ListNode<Type> *Find(int n);        //find the nth data

       bool Insert(Type item,int n=0);       //insert the data into the nth data of the list

       Type Remove(int n=0);            //delete the nth data

       bool RemoveAll(Type item);          //delete all the datas which are equal to value

       Type Get(int n);  //get the nth data

       void Print();     //print the list

     

    private:

       ListNode<Type> *head;

     

    };

     

    template<typename Type> void CircularList<Type>::MakeEmpty(){

       ListNode<Type> *pdel,*pmove=head;

       while(pmove->m_pnext!=head){

         pdel=pmove->m_pnext;

         pmove->m_pnext=pdel->m_pnext;

         delete pdel;

       }

    }

     

    template<typename Type> int CircularList<Type>::Length(){

       ListNode<Type> *pmove=head;

       int count=0;

       while(pmove->m_pnext!=head){

         pmove=pmove->m_pnext;

         count++;

       }

       return count;

    }

     

    template<typename Type> ListNode<Type>* CircularList<Type>::Find(int n){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         return NULL;

       }

       ListNode<Type> *pmove=head->m_pnext;

       for(int i=0;i<n&&pmove!=head;i++){

         pmove=pmove->m_pnext;

       }

       if(pmove==head){

         cout<<"The n is out of boundary"<<endl;

         return NULL;

       }

       return pmove;

    }

     

    template<typename Type> ListNode<Type>* CircularList<Type>::Find(Type value,int n){

       if(n<1){

         cout<<"The n is illegal"<<endl;

         return NULL;

       }

       ListNode<Type> *pmove=head;

       int count=0;

       while(count!=n){

         pmove=pmove->m_pnext;

         if(pmove->m_data==value){

            count++;

         }

         if(pmove==head){

            cout<<"can't find the element"<<endl;

            return NULL;

         }

       }

       return pmove;

    }

     

    template<typename Type> bool CircularList<Type>::Insert(Type item, int n){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         return 0;

       }

       ListNode<Type> *pmove=head;

       ListNode<Type> *pnode=new ListNode<Type>(item);

       if(pnode==NULL){

         cout<<"Application error!"<<endl;

         exit(1);

       }

       for(int i=0;i<n;i++){

         pmove=pmove->m_pnext;

         if(pmove==head){

            cout<<"The n is out of boundary"<<endl;

            return 0;

         }

       }

     

       pnode->m_pnext=pmove->m_pnext;

       pmove->m_pnext=pnode;

       return 1;

    }

     

    template<typename Type> bool CircularList<Type>::RemoveAll(Type item){

       ListNode<Type> *pmove=head;

       ListNode<Type> *pdel=head->m_pnext;

       while(pdel!=head){

         if(pdel->m_data==item){

            pmove->m_pnext=pdel->m_pnext;

            delete pdel;

            pdel=pmove->m_pnext;

            continue;

         }

         pmove=pmove->m_pnext;

         pdel=pdel->m_pnext;

       }

       return 1;

    }

     

    template<typename Type> Type CircularList<Type>::Remove(int n){

       if(n<0){

         cout<<"can't find the element"<<endl;

         exit(1);

       }

       ListNode<Type> *pmove=head,*pdel;

       for(int i=0;i<n&&pmove->m_pnext!=head;i++){

         pmove=pmove->m_pnext;

       }

       if(pmove->m_pnext==head){

         cout<<"can't find the element"<<endl;

         exit(1);

       }

       pdel=pmove->m_pnext;

       pmove->m_pnext=pdel->m_pnext;

       Type temp=pdel->m_data;

       delete pdel;

       return temp;

    }

     

    template<typename Type> Type CircularList<Type>::Get(int n){

       if(n<0){

         cout<<"The n is out of boundary"<<endl;

         exit(1);

       }

       ListNode<Type> *pmove=head->m_pnext;

       for(int i=0;i<n;i++){

         pmove=pmove->m_pnext;

         if(pmove==head){

            cout<<"The n is out of boundary"<<endl;

            exit(1);

         }

       }

       return pmove->m_data;

    }

     

    template<typename Type> void CircularList<Type>::Print(){

       ListNode<Type> *pmove=head->m_pnext;

       cout<<"head";

       while(pmove!=head){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->over"<<endl<<endl<<endl;

    }

     

    Test.cpp

    #include <iostream>

    #include "CircularList.h"

     

    using namespace std;

     

    int main()

    {

       CircularList<int> list;

       for(int i=0;i<20;i++){

         list.Insert(i*3,i);

       }

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

       for(int i=0;i<5;i++){

         list.Insert(3,i*3);

       }

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       list.Remove(5);

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       list.RemoveAll(3);

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

       cout<<"The third element is "<<list.Get(3)<<endl;

     

       list.MakeEmpty();

       cout<<"the Length of the list is "<<list.Length()<<endl;

       list.Print();

     

     

       return 0;

    }

     

    5、 顺序栈

    SeqStack.h

    template<typename Type> class SeqStack{

    public:

       SeqStack(int sz):m_ntop(-1),m_nMaxSize(sz){

         m_pelements=new Type[sz];

         if(m_pelements==NULL){

            cout<<"Application Error!"<<endl;

            exit(1);

         }

       }

       ~SeqStack(){

         delete[] m_pelements;

       }

     

    public:

     

       void Push(const Type item); //push data

       Type Pop();                 //pop data

       Type GetTop() const;        //get data

        void Print();               //print the stack

       void MakeEmpty(){           //make the stack empty

         m_ntop=-1;

       }

       bool IsEmpty() const{

         return m_ntop==-1;

       }

       bool IsFull() const{

         return m_ntop==m_nMaxSize-1;

       }

      

     

    private:

       int m_ntop;

       Type *m_pelements;

       int m_nMaxSize;

     

    };

     

    template<typename Type> void SeqStack<Type>::Push(const Type item){

       if(IsFull()){

         cout<<"The stack is full!"<<endl;

         return;

       }

       m_pelements[++m_ntop]=item;

    }

     

    template<typename Type> Type SeqStack<Type>::Pop(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       return m_pelements[m_ntop--];

    }

     

    template<typename Type> Type SeqStack<Type>::GetTop() const{

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       return m_pelements[m_ntop];

    }

     

    template<typename Type> void SeqStack<Type>::Print(){

       cout<<"bottom";

       for(int i=0;i<=m_ntop;i++){

         cout<<"--->"<<m_pelements[i];

       }

       cout<<"--->top"<<endl<<endl<<endl;

    }

     

    Test.cpp

     

    #include<iostream>

    using namespace std;

     

    #include "SeqStack.h"

     

    int main(){

       SeqStack<int> stack(10);

       int init[10]={1,2,6,9,0,3,8,7,5,4};

       for(int i=0;i<10;i++){

         stack.Push(init[i]);

       }

       stack.Print();

     

       stack.Push(88);

     

       cout<<stack.Pop()<<endl;

       stack.Print();

      

       stack.MakeEmpty();

       stack.Print();

     

       stack.Pop();

       return 0;

    }

     

    6、 链式栈

    StackNode.h

    template<typename Type> class LinkStack;

     

    template<typename Type> class StackNode{

    private:

       friend class LinkStack<Type>;

       StackNode(Type dt,StackNode<Type> *next=NULL):m_data(dt),m_pnext(next){}

     

    private:

       Type m_data;

       StackNode<Type> *m_pnext;

    };

     

    LinkStack.h

    #include "StackNode.h"

     

    template<typename Type> class LinkStack{

    public:

       LinkStack():m_ptop(NULL){}

       ~LinkStack(){

         MakeEmpty();

       }

     

    public:

       void MakeEmpty();           //make the stack empty

       void Push(const Type item); //push the data

       Type Pop();                 //pop the data

       Type GetTop() const;        //get the data

        void Print();               //print the stack

           

       bool IsEmpty() const{

         return m_ptop==NULL;

       }

      

    private:

       StackNode<Type> *m_ptop;

    };

     

    template<typename Type> void LinkStack<Type>::MakeEmpty(){

       StackNode<Type> *pmove;

       while(m_ptop!=NULL){

         pmove=m_ptop;

         m_ptop=m_ptop->m_pnext;

         delete pmove;

       }

    }

     

    template<typename Type> void LinkStack<Type>::Push(const Type item){

       m_ptop=new StackNode<Type>(item,m_ptop);

    }

     

    template<typename Type> Type LinkStack<Type>::GetTop() const{

       if(IsEmpty()){

         cout<<"There is no elements!"<<endl;

         exit(1);

       }

       return m_ptop->m_data;

    }

     

    template<typename Type> Type LinkStack<Type>::Pop(){

       if(IsEmpty()){

         cout<<"There is no elements!"<<endl;

         exit(1);

       }

       StackNode<Type> *pdel=m_ptop;

       m_ptop=m_ptop->m_pnext;

       Type temp=pdel->m_data;

       delete pdel;

       return temp;

    }

     

    template<typename Type> void LinkStack<Type>::Print(){

       StackNode<Type> *pmove=m_ptop;

       cout<<"buttom";

       while(pmove!=NULL){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->top"<<endl<<endl<<endl;

    }

     

    Test.cpp

     

    #include <iostream>

    using namespace std;

     

    #include "LinkStack.h"

     

    int main(){

       LinkStack<int> stack;

       int init[10]={1,3,5,7,4,2,8,0,6,9};

       for(int i=0;i<10;i++){

         stack.Push(init[i]);

       }

       stack.Print();

     

       cout<<stack.Pop()<<endl;

       stack.Print();

      

       cout<<stack.GetTop()<<endl;

       stack.Print();

     

       cout<<stack.Pop()<<endl;

       stack.Print();

     

       stack.MakeEmpty();

       stack.Print();

      

       stack.Pop();

     

     

       return 0;

    }

     

    7.顺序队列

    SeqQueue.h

     

    template<typename Type> class SeqQueue{

    public:

       SeqQueue(int sz):m_nrear(0),m_nfront(0),m_ncount(0),m_nMaxSize(sz){

         m_pelements=new Type[sz];

         if(m_pelements==NULL){

            cout<<"Application Error!"<<endl;

            exit(1);

         }

       }

       ~SeqQueue(){

         delete[] m_pelements;

       }

       void MakeEmpty();               //make the queue empty

       bool IsEmpty();

       bool IsFull();

       bool Append(const Type item);   //insert data

       Type Delete();                  //delete data

       Type Get();                     //get data

       void Print();                   //print the queue

     

    private:

       int m_nrear;

       int m_nfront;

       int m_ncount;

       int m_nMaxSize;

       Type *m_pelements;

      

    };

     

    template<typename Type> void SeqQueue<Type>::MakeEmpty(){

       this->m_ncount=0;

       this->m_nfront=0;

       this->m_nrear=0;

    }

     

    template<typename Type> bool SeqQueue<Type>::IsEmpty(){

       return m_ncount==0;

    }

     

    template<typename Type> bool SeqQueue<Type>::IsFull(){

       return m_ncount==m_nMaxSize;

    }

     

    template<typename Type> bool SeqQueue<Type>::Append(const Type item){

       if(IsFull()){

         cout<<"The queue is full!"<<endl;

         return 0;

       }

       m_pelements[m_nrear]=item;

       m_nrear=(m_nrear+1)%m_nMaxSize;

       m_ncount++;

       return 1;

    }

     

    template<typename Type> Type SeqQueue<Type>::Delete(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       Type temp=m_pelements[m_nfront];

       m_nfront=(m_nfront+1)%m_nMaxSize;

       m_ncount--;

       return temp;

    }

     

    template<typename Type> Type SeqQueue<Type>::Get(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       return m_pelements[m_nfront];

    }

     

    template<typename Type> void SeqQueue<Type>::Print(){

       cout<<"front";

       for(int i=0;i<m_ncount;i++){

         cout<<"--->"<<m_pelements[(m_nfront+i+m_nMaxSize)%m_nMaxSize];

       }

       cout<<"--->rear"<<endl<<endl<<endl;

    }

     

    Test.cpp

    #include <iostream>

    using namespace std;

     

    #include "SeqQueue.h"

     

    int main(){

       SeqQueue<int> queue(10);

       int init[10]={1,6,9,0,2,5,8,3,7,4};

       for(int i=0;i<5;i++){

         queue.Append(init[i]);

       }

       queue.Print();

     

       cout<<queue.Delete()<<endl;

       queue.Print();

     

       for(int i=5;i<10;i++){

         queue.Append(init[i]);

       }

       queue.Print();

     

       cout<<queue.Get()<<endl;

     

       queue.MakeEmpty();

       queue.Print();

     

       queue.Append(1);

       queue.Print();

     

       return 0;

    }

     

    8、链式队列

    QueueNode.h

    template<typename Type> class LinkQueue;

     

    template<typename Type> class QueueNode{

    private:

       friend class LinkQueue<Type>;

       QueueNode(const Type item,QueueNode<Type> *next=NULL)

         :m_data(item),m_pnext(next){}

    private:

       Type m_data;

       QueueNode<Type> *m_pnext;

    };

     

    LinkQueue.h

    #include "QueueNode.h"

     

    template<typename Type> class LinkQueue{

    public:

       LinkQueue():m_prear(NULL),m_pfront(NULL){}

       ~LinkQueue(){

         MakeEmpty();

       }

       void Append(const Type item);   //insert data

       Type Delete();                  //delete data

       Type GetFront();                //get data

       void MakeEmpty();               //make the queue empty

        void Print();                   //print the queue

     

       bool IsEmpty() const{

         return m_pfront==NULL;

       }

     

    private:

       QueueNode<Type> *m_prear,*m_pfront;

    };

     

    template<typename Type> void LinkQueue<Type>::MakeEmpty(){

       QueueNode<Type> *pdel;

       while(m_pfront){

         pdel=m_pfront;

         m_pfront=m_pfront->m_pnext;

         delete pdel;

       }

    }

     

    template<typename Type> void LinkQueue<Type>::Append(const Type item){

       if(m_pfront==NULL){

         m_pfront=m_prear=new QueueNode<Type>(item);

       }

       else{

         m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

       }

    }

     

    template<typename Type> Type LinkQueue<Type>::Delete(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       QueueNode<Type> *pdel=m_pfront;

       Type temp=m_pfront->m_data;

       m_pfront=m_pfront->m_pnext;

       delete pdel;

       return temp;

    }

     

    template<typename Type> Type LinkQueue<Type>::GetFront(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       return m_pfront->m_data;

    }

     

    template<typename Type> void LinkQueue<Type>::Print(){

       QueueNode<Type> *pmove=m_pfront;

       cout<<"front";

       while(pmove){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->rear"<<endl<<endl<<endl;

    }

     

    Test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "LinkQueue.h"

     

    int main(){

       LinkQueue<int> queue;

       int init[10]={1,3,6,8,9,2,0,5,4,7};

     

       for(int i=0;i<10;i++){

         queue.Append(init[i]);

       }

       queue.Print();

     

       queue.Delete();

       queue.Print();

     

       cout<<queue.GetFront()<<endl;

       queue.Print();

     

       queue.MakeEmpty();

       queue.Print();

     

       queue.Delete();

     

       return 0;

    }

     

    9、优先级队列

    QueueNode.h

     

    template<typename Type,typename Cmp> class PriorityQueue;

     

    template<typename Type,typename Cmp> class QueueNode{

    private:

       friend class PriorityQueue<Type,Cmp>;

       QueueNode(const Type item,QueueNode<Type,Cmp> *next=NULL)

         :m_data(item),m_pnext(next){}

    private:

       Type m_data;

       QueueNode<Type,Cmp> *m_pnext;

    };

     

    Compare.h

    template<typename Type> class Compare{ //处理一般比较大小

    public:

       static bool lt(Type item1,Type item2);

    };

     

    template<typename Type> bool Compare<Type>::lt(Type item1, Type item2){

       return item1<item2;

    }

     

    struct SpecialData{

       friend ostream& operator<<(ostream& ,SpecialData &);

       int m_ntenor;

       int m_npir;

    };

     

    ostream& operator<<(ostream& os,SpecialData &out){

       os<<out.m_ntenor<<"   "<<out.m_npir;

       return os;

    }

     

    class SpecialCmp{    //处理特殊比较大小,用户可添加适当的类

    public:

       static bool lt(SpecialData item1,SpecialData item2);

    };

     

    bool SpecialCmp::lt(SpecialData item1, SpecialData item2){

       return item1.m_npir<item2.m_npir;

    }

     

    PriorityQueue.h

    #include "QueueNode.h"

    #include "Compare.h"

     

    template<typename Type,typename Cmp> class PriorityQueue{  //Cmp is Designed for compare

    public:

       PriorityQueue():m_prear(NULL),m_pfront(NULL){}

       ~PriorityQueue(){

         MakeEmpty();

       }

     

       void MakeEmpty();               //make the queue empty

       void Append(const Type item);   //insert data

       Type Delete();                  //delete data

       Type GetFront();                //get data

        void Print();                   //print the queue

           

       bool IsEmpty() const{          

         return m_pfront==NULL;

       }

      

     

    private:

       QueueNode<Type,Cmp> *m_prear,*m_pfront;

    };

     

    template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::MakeEmpty(){

       QueueNode<Type,Cmp> *pdel;

       while(m_pfront){

         pdel=m_pfront;

         m_pfront=m_pfront->m_pnext;

         delete pdel;

       }

    }

     

    template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::Append(const Type item){

       if(m_pfront==NULL){

         m_pfront=m_prear=new QueueNode<Type,Cmp>(item);

       }

       else{

         m_prear=m_prear->m_pnext=new QueueNode<Type,Cmp>(item);

       }

    }

     

    template<typename Type,typename Cmp> Type PriorityQueue<Type,Cmp>::Delete(){

       if(IsEmpty()){

         cout<<"There is no elements!"<<endl;

         exit(1);

       }

       QueueNode<Type,Cmp> *pdel=m_pfront,*pmove=m_pfront;

       while(pmove->m_pnext){  //get the minimize priority's data

     

            //cmp:: lt is used for compare the two data, if the front one

            //      is less than the back, then return 1

         if(Cmp::lt(pmove->m_pnext->m_data,pdel->m_pnext->m_data)){

            pdel=pmove;

         }

         pmove=pmove->m_pnext;

       }

     

       pmove=pdel;

       pdel=pdel->m_pnext;

       pmove->m_pnext=pdel->m_pnext;

       Type temp=pdel->m_data;

       delete pdel;

       return temp;

    }

     

    template<typename Type,typename Cmp> Type PriorityQueue<Type,Cmp>::GetFront(){

       if(IsEmpty()){

         cout<<"There is no elements!"<<endl;

         exit(1);

       }

       QueueNode<Type,Cmp> *pdel=m_pfront,*pmove=m_pfront->m_pnext;

       while(pmove){   //get the minimize priority's data

         if(Cmp::lt(pmove->m_data,pdel->m_data)){

            pdel=pmove;

         }

         pmove=pmove->m_pnext;

       }

       return pdel->m_data;

    }

     

    template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::Print(){

       QueueNode<Type,Cmp> *pmove=m_pfront;

       cout<<"front";

     

       while(pmove){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

     

       cout<<"--->rear"<<endl<<endl<<endl;

    }

     

    Test.cpp

    #include <iostream>

    #include <cstdlib>

    using namespace std;

     

    #include "PriorityQueue.h"

     

    int main(){

       PriorityQueue<int,Compare<int> > queue;

       int init[10]={1,9,3,5,0,8,2,4,6,7};

       for(int i=0;i<10;i++){

         queue.Append(init[i]);

       }

       queue.Print();

     

       queue.Delete();

     

       queue.Print();

     

       system("pause");

       system("cls");

      

       PriorityQueue<SpecialData,SpecialCmp> spe_queue;

       int init2[5][2]={{34,2},{64,1},{18,3},{24,2},{55,4}};

       SpecialData data[5];

       for(int i=0;i<5;i++){

         data[i].m_npir=init2[i][1];

         data[i].m_ntenor=init2[i][0];

       }

       for(int i=0;i<5;i++){

         spe_queue.Append(data[i]);

       }

       spe_queue.Print();

     

        cout<<spe_queue.GetFront()<<endl<<endl;

       spe_queue.Delete();

       spe_queue.Print();

      

      

       return 0;

    }

    10、串

    MyString.h

    const int MAXSIZE=100;

     

    class CMyString

    {

    public:

       CMyString(const CMyString& copy);

       CMyString(const char *init);

       CMyString();

       ~CMyString(){

         delete[] m_pstr;

       }

       int Length() const{

         return m_ncurlen;

       }

       int Find(CMyString part) const;

       char* GetBuffer() const;

     

    public:

       CMyString& operator()(int pos,int len);

       bool operator==(const CMyString cmp_str) const;

       bool operator!=(const CMyString cmp_str) const;

       bool operator<(const CMyString cmp_str) const;

       bool operator>(const CMyString cmp_str) const;

       bool operator!() const{

         return m_ncurlen==0;

       }

       CMyString& operator=(const CMyString &copy);

       CMyString& operator+=(const CMyString &add);

       char& operator[](int i);

       friend ostream& operator<<(ostream& ,CMyString&);

       friend istream& operator>>(istream& ,CMyString&);

    private:

       void Next();

     

    private:

       int m_ncurlen;

       char *m_pstr;

       int *m_pnext;

    };

     

    MyString.cpp

    #include <iostream>

    #include <cstring>

     

    using namespace std;

     

    #include "MyString.h"

     

     

     

    CMyString::CMyString(){        //create empty string

       m_pstr=new char[MAXSIZE+1];

       if(!m_pstr){

         cerr<<"Allocation Error"<<endl;

         exit(1);

       }

       this->m_ncurlen=0;

       m_pstr[0]='';

    }

     

    CMyString::CMyString(const char *init){    //initialize the string with char*

       m_pstr=new char[MAXSIZE+1];

       if(!m_pstr){

         cerr<<"Allocation Error"<<endl;

         exit(1);

       }

       this->m_ncurlen=strlen(init);

       strcpy(m_pstr,init);

    }

     

    CMyString::CMyString(const CMyString &copy){  //initialize the string with string

       m_pstr=new char[MAXSIZE+1];

       if(!m_pstr){

         cerr<<"Allocation Error"<<endl;

         exit(1);

       }

       this->m_ncurlen=copy.m_ncurlen;

       strcpy(m_pstr,copy.m_pstr);

    }

     

    int CMyString::Find(CMyString part) const{    //string match :KMP

       int posP=0,posT=0;

       int lengthP=part.m_ncurlen,lengthT=this->m_ncurlen;

     

       part.Next();

       while(posP<lengthP&&posT<lengthT){

         if(part.m_pstr[posP]==this->m_pstr[posT]){

            posP++;

            posT++;

         }

         else{

            if(posP==0){

              posT++;

            }

            else{

              posP=part.m_pnext[posP-1];

            }

         }

       }

       delete[] part.m_pnext;

       if(posP<lengthP){

         return 0;

       }

       else{

         return 1;

       }

    }

     

    void CMyString::Next(){        //get the next char for matching : KMP

       int length=this->m_ncurlen;

       this->m_pnext=new int[length];

       this->m_pnext[0]=0;

       for(int i=1;i<length;i++){

         int j=this->m_pnext[i-1];

         while(*(this->m_pstr+i)!=*(this->m_pstr+j)&&j>0){

            j=this->m_pnext[j-1];

         }

         if(*(this->m_pstr+i)==*(this->m_pstr+j)){

            this->m_pnext[i]=j+1;

         }

         else{

            this->m_pnext[i]=0;

         }

       }

    // for(int i=0;i<length;i++)

    //   cout<<i<<": "<<m_pnext[i]<<endl;

    }

     

    char *CMyString::GetBuffer() const{   //get the char* from string

       return this->m_pstr;

    }

     

    CMyString& CMyString::operator()(int pos, int len){     //get len char with the begining of pos

       CMyString *temp=new CMyString;

       if(pos<0||pos+len-1>MAXSIZE||len<0){

         temp->m_ncurlen=0;

         temp->m_pstr[0]='';

       }

       else{

         if(pos+len-1>=m_ncurlen){

            len=m_ncurlen-pos;

         }

         temp->m_ncurlen=len;

         for(int i=0,j=pos;i<len;i++,j++){

            temp->m_pstr[i]=m_pstr[j];

         }

         temp->m_pstr[len]='';

       }

       return *temp;

    }

     

    bool CMyString::operator==(const CMyString cmp_str) const{

       if(this->m_ncurlen!=cmp_str.m_ncurlen){

         return 0;

       }

       for(int i=0;i<this->m_ncurlen;i++){

         if(this->m_pstr[i]!=cmp_str.m_pstr[i])

            return 0;

       }

       return 1;

    }

    bool CMyString::operator!=(const CMyString cmp_str) const{

       if(*this==cmp_str)

         return 0;

       return 1;

    }

    bool CMyString::operator<(const CMyString cmp_str) const{

       if(this->m_ncurlen!=cmp_str.m_ncurlen){

         return this->m_ncurlen<cmp_str.m_ncurlen;

       }

       for(int i=0;i<this->m_ncurlen;i++){

         if(this->m_pstr[i]!=cmp_str.m_pstr[i]){

            return this->m_pnext[i]<cmp_str.m_pnext[i];

         }

       }

       return 0;

    }

    bool CMyString::operator>(const CMyString cmp_str) const{

       if(*this<cmp_str||*this==cmp_str){

         return 0;

       }

       return 1;

    }

    CMyString& CMyString::operator=(const CMyString &copy){    //赋值操作

       delete[] this->m_pstr;

       this->m_pstr=new char[copy.m_ncurlen+1];

       strcpy

         (this->m_pstr,copy.m_pstr);

       return *this;

    }

    CMyString& CMyString::operator+=(const CMyString &add){    //字符串追加

       int length=this->m_ncurlen+add.m_ncurlen;

       int n=this->m_ncurlen;

       CMyString temp(*this);

       delete[] this->m_pstr;

       this->m_pstr=new char[length+1];

       for(int i=0;i<n;i++){

         this->m_pstr[i]=temp[i];

       }

       for(int i=n;i<length;i++){

         this->m_pstr[i]=add.m_pstr[i-n];

       }

       this->m_pstr[length]='';

       return *this;

    }

    char& CMyString::operator[](int i){   //取元素

       if(i<0||i>=this->m_ncurlen){

         cout<<"out of boundary!"<<endl;

         exit(1);

       }

       return this->m_pstr[i];

    }

     

    ostream& operator<<(ostream& os,CMyString& str){

       os<<str.m_pstr;

       return os;

    }

     

    istream& operator>>(istream& is,CMyString& str){

       is>>str.m_pstr;

       return is;

    }

     

    test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "MyString.h"

     

    int main(){

       CMyString test1("babc");

       CMyString test2("abababcdefb");

       cout<<test2.Find(test1)<<endl;

       cout<<test2(2,3)<<endl;

     

       if(test1<test2){

         cout<<test1<<"<"<<test2<<endl;

       }

       else{

         if(test1==test2){

            cout<<test1<<"=="<<test2<<endl;

         }

         else{

            if(test1>test2){

              cout<<test1<<">"<<test2<<endl;

            }

         }

       }

     

       int length=test2.Length();

       for(int i=0;i<length;i++){

         cout<<test2[i];

       }

       cout<<endl;

     

       test1+=test2;

       cout<<test1<<endl;

     

       test1=test2;

       cout<<test1<<endl;

     

       return 0;

    }

    11、二叉树

    BinTreeNode.h

     

    template<typename Type> class BinaryTree;

     

    template<typename Type> class BinTreeNode{

    public:

       friend class BinaryTree<Type>;

       BinTreeNode():m_pleft(NULL),m_pright(NULL){}

       BinTreeNode(Type item,BinTreeNode<Type> *left=NULL,BinTreeNode<Type> *right=NULL)

         :m_data(item),m_pleft(left),m_pright(right){}

     

       Type GetData() const;    //get thd data

       BinTreeNode<Type> *GetLeft() const;   //get the left node

       BinTreeNode<Type> *GetRight() const;  //get the right node

     

       void SetData(const Type data);      //change the data

       void SetLeft(const BinTreeNode<Type> *left);  //change thd left node

       void SetRight(const BinTreeNode<Type> *right);  //change the right node

     

       void InOrder();   //inorder the tree with the root of the node

       void PreOrder();  //perorder the tree with the root of the node

       void PostOrder(); //postoder the tree with the root of the node

      

       int Size();       //get size

       int Height();     //get height

       BinTreeNode<Type> *Copy(const BinTreeNode<Type> *copy);   //copy the node

       void Destroy(){   //destroy the tree with the root of the node

         if(this!=NULL){

            this->m_pleft->Destroy();

            this->m_pright->Destroy();

            delete this;

         }

       }

     

       friend bool equal<Type>(const BinTreeNode<Type> *s,const BinTreeNode<Type> *t); //is equal?

     

    private:

       BinTreeNode<Type> *m_pleft,*m_pright;

       Type m_data;

    };

     

    template<typename Type> Type BinTreeNode<Type>::GetData() const{

       return this!=NULL?m_data:-1;

    }

     

    template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::GetLeft() const{

       return this!=NULL?m_pleft:NULL;

    }

     

    template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::GetRight() const{

       return this!=NULL?m_pright:NULL;

    }

     

    template<typename Type> void BinTreeNode<Type>::SetData(const Type data){

       if(this!=NULL){

         m_data=data;

       }

    }

     

    template<typename Type> void BinTreeNode<Type>::SetLeft(const BinTreeNode<Type> *left){

       if(this!=NULL){

         m_pleft=left;

       }

    }

     

    template<typename Type> void BinTreeNode<Type>::SetRight(const BinTreeNode<Type> *right){

       if(this!=NULL){

         m_pright=right;

       }

    }

     

    template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::Copy(const BinTreeNode<Type> *copy){

       if(copy==NULL){

         return NULL;

       }

     

       BinTreeNode<Type> *temp=new BinTreeNode<Type>(copy->m_data);

       temp->m_pleft=Copy(copy->m_pleft);

       temp->m_pright=Copy(copy->m_pright);

       return temp;

    }

     

    template<typename Type> bool equal(const BinTreeNode<Type> *s,const BinTreeNode<Type> *t){

       if(s==NULL&&t==NULL){

         return 1;

       }

    if(s&&t&&s->m_data==t->m_data&&equal(s->m_pleft,t->m_pleft)&&equal(s->m_pright,t->m_pright)){

         return 1;

       }

       return 0;

    }

     

    template<typename Type> void BinTreeNode<Type>::InOrder(){

       if(this!=NULL){

         this->m_pleft->InOrder();

         cout<<"--->"<<this->m_data;

         this->m_pright->InOrder();

       }

    }

     

    template<typename Type> void BinTreeNode<Type>::PreOrder(){

       if(this!=NULL){

         cout<<"--->"<<this->m_data;

         this->m_pleft->PreOrder();

         this->m_pright->PreOrder();

       }

    }

     

    template<typename Type> void BinTreeNode<Type>::PostOrder(){

       if(this!=NULL){

         this->m_pleft->PostOrder();

         this->m_pright->PostOrder();

         cout<<"--->"<<this->m_data;

       }

    }

     

    template<typename Type> int BinTreeNode<Type>::Size(){

       if(this==NULL){

         return 0;

       }

       return 1+this->m_pleft->Size()+this->m_pright->Size();

    }

     

    template<typename Type> int BinTreeNode<Type>::Height(){

       if(this==NULL){

         return -1;

       }

       int lheight,rheight;

       lheight=this->m_pleft->Height();

       rheight=this->m_pright->Height();

       return 1+(lheight>rheight?lheight:rheight);

    }

     

    BinaryTree.h

    #include "BinTreeNode.h"

     

    template<typename Type> class BinaryTree{

    public:

       BinaryTree():m_proot(NULL){}

       BinaryTree(const Type stop):m_stop(stop),m_proot(NULL){}

       BinaryTree(BinaryTree<Type>& copy);

       virtual ~BinaryTree(){

         m_proot->Destroy();

       }

       virtual bool IsEmpty(){     //is empty?

         return m_proot==NULL;

       }

      

       virtual BinTreeNode<Type> *GetLeft(BinTreeNode<Type> *current); //get the left node

       virtual BinTreeNode<Type> *GetRight(BinTreeNode<Type> *current);//get the right node

       virtual BinTreeNode<Type> *GetParent(BinTreeNode<Type> *current);//ghe thd parent

       const BinTreeNode<Type> *GetRoot() const;  //get root

      

       virtual bool Insert(const Type item);    //insert a new node

       virtual BinTreeNode<Type> *Find(const Type item) const;   //find thd node with the data

     

       void InOrder();

       void PreOrder();

       void PostOrder();

     

       int Size();    //get size

       int Height();  //get height

     

       BinaryTree<Type>& operator=(const BinaryTree<Type> copy);   //evaluate node

     

       friend bool operator== <Type>(const BinaryTree<Type> s,const BinaryTree<Type> t);//is equal?

       friend ostream& operator<< <Type>(ostream& ,BinaryTree<Type>&);  //output the data

       friend istream& operator>> <Type>(istream& ,BinaryTree<Type>&);  //input the data

        

    private:

       Type m_stop;   //just using for input the data;

       BinTreeNode<Type> *m_proot;

     

       //find the parent of current in the tree with the root of start

       BinTreeNode<Type> *GetParent(BinTreeNode<Type> *start,BinTreeNode<Type> *current);

       void Print(BinTreeNode<Type> *start,int n=0); //print the tree with the root of start

    };

     

    template<typename Type> BinaryTree<Type>::BinaryTree(BinaryTree<Type>& copy){

       if(copy.m_proot){

         this->m_stop=copy.m_stop;

       }

       m_proot=m_proot->Copy(copy.m_proot);

    }

    template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetLeft(BinTreeNode<Type> *current){

       return m_proot&&current?current->m_pleft:NULL;

    }

     

    template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetRight(BinTreeNode<Type> *current){

       return m_proot&&current?current->m_pright:NULL;

    }

     

    template<typename Type> const BinTreeNode<Type>* BinaryTree<Type>::GetRoot() const{

       return m_proot;

    }

     

    template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetParent(BinTreeNode<Type> *start, BinTreeNode<Type> *current){

       if(start==NULL||current==NULL){

         return NULL;

       }

       if(start->m_pleft==current||start->m_pright==current){

         return start;

       }

       BinTreeNode<Type> *pmove;

       if((pmove=GetParent(start->m_pleft,current))!=NULL){//find the parent in the left subtree

         return pmove;

       }

       else{

         return GetParent(start->m_pright,current); //find the parent in the right subtree

       }

    }

     

    template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetParent(BinTreeNode<Type> *current){

       return m_proot==NULL||current==m_proot?NULL:GetParent(m_proot,current);

    }

     

     

    template<typename Type> bool BinaryTree<Type>::Insert(const Type item){

       BinTreeNode<Type> *pstart=m_proot,*newnode=new BinTreeNode<Type>(item);

       if(m_proot==NULL){

         m_proot=newnode;

         return 1;

       }

       while(1){

         if(item==pstart->m_data){

            cout<<"The item "<<item<<" is exist!"<<endl;

            return 0;

         }

         if(item<pstart->m_data){

            if(pstart->m_pleft==NULL){

              pstart->m_pleft=newnode;

              return 1;

            }

            pstart=pstart->m_pleft;  //if less than the node then insert to the left subtree

         }

         else{

            if(pstart->m_pright==NULL){

              pstart->m_pright=newnode;

              return 1;

            }

            pstart=pstart->m_pright;//if more than the node then insert to the right subtree

         }

       }

    }

     

    template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::Find(const Type item) const{

       BinTreeNode<Type> *pstart=m_proot;

       while(pstart){

         if(item==pstart->m_data){

            return pstart;

         }

         if(item<pstart->m_data){

            pstart=pstart->m_pleft;  //if less than the node then find in the left subtree

         }

         else{

            pstart=pstart->m_pright;//if more than the node then find in the right subtree

         }

       }

       return NULL;

    }

     

    template<typename Type> void BinaryTree<Type>::Print(BinTreeNode<Type> *start, int n){

       if(start==NULL){

         for(int i=0;i<n;i++){

            cout<<"     ";

         }

         cout<<"NULL"<<endl;

         return;

       }

       Print(start->m_pright,n+1); //print the right subtree

       for(int i=0;i<n;i++){  //print blanks with the height of the node

         cout<<"     ";

       }

       if(n>=0){

         cout<<start->m_data<<"--->"<<endl;//print the node

       }

       Print(start->m_pleft,n+1);  //print the left subtree

    }

     

    template<typename Type> BinaryTree<Type>& BinaryTree<Type>::operator=(const BinaryTree<Type> copy){

       if(copy.m_proot){

         this->m_stop=copy.m_stop;

       }

       m_proot=m_proot->Copy(copy.m_proot);

        return *this;

    }

     

    template<typename Type> ostream& operator<<(ostream& os,BinaryTree<Type>& out){

       out.Print(out.m_proot);

       return os;

    }

     

    template<typename Type> istream& operator>>(istream& is,BinaryTree<Type>& in){

       Type item;

       cout<<"initialize the tree:"<<endl<<"Input data(end with "<<in.m_stop<<"!):";

       is>>item;

       while(item!=in.m_stop){  //m_stop is the end of input

         in.Insert(item);

         is>>item;

       }

       return is;

    }

     

    template<typename Type> bool operator==(const BinaryTree<Type> s,const BinaryTree<Type> t){

       return equal(s.m_proot,t.m_proot);

    }

     

    template<typename Type> void BinaryTree<Type>::InOrder(){

       this->m_proot->InOrder();

    }

     

    template<typename Type> void BinaryTree<Type>::PreOrder(){

       this->m_proot->PreOrder();

    }

     

    template<typename Type> void BinaryTree<Type>::PostOrder(){

       this->m_proot->PostOrder();

    }

     

    template<typename Type> int BinaryTree<Type>::Size(){

       return this->m_proot->Size();

     

    }

     

    template<typename Type> int BinaryTree<Type>::Height(){

       return this->m_proot->Height();

    }

     

    Test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "BinaryTree.h"

     

    int main(){

       BinaryTree<int> tree(-1);

    // int init[10]={3,6,0,2,8,4,9,1,5,7};

       int init[30]={17,6,22,29,14,0,21,13,27,18,2,28,8

         ,26,3,12,20,4,9,23,15,1,11,5,19,24,16,7,10,25};

       for(int i=0;i<30;i++){

         tree.Insert(init[i]);

       }

       //cin>>tree;

       cout<<tree<<endl;

     

       cout<<tree.GetParent(tree.Find(20))->GetData()<<endl;

       cout<<tree.Find(15)->GetRight()->GetData()<<endl;

     

       cout<<"size="<<tree.Size()<<endl;

       cout<<"height="<<tree.Height()<<endl;

     

       tree.InOrder();

       cout<<endl<<endl;

       tree.PreOrder();

       cout<<endl<<endl;

       tree.PostOrder();

       cout<<endl<<endl;

      

     

       BinaryTree<int> tree2=tree;

       cout<<tree2<<endl;

     

       cout<<tree2.GetParent(tree2.Find(20))->GetData()<<endl;

       cout<<tree2.Find(15)->GetRight()->GetData()<<endl;

     

       cout<<(tree==tree2)<<endl;

       return 0;

    }

    12、线索二叉树

    ThreadNode.h

    template<typename Type> class ThreadTree;

    template<typename Type> class ThreadInorderIterator;

     

    template<typename Type> class ThreadNode{

    public:

       friend class ThreadTree<Type>;

       friend class ThreadInorderIterator<Type>;

       ThreadNode():m_nleftthread(1),m_nrightthread(1){

         m_pleft=this;

         m_pright=this;

       }

       ThreadNode(const Type item):m_data(item),m_pleft(NULL),m_pright(NULL)

         ,m_nleftthread(0),m_nrightthread(0){}

     

    private:

       int m_nleftthread,m_nrightthread;

       ThreadNode<Type> *m_pleft,*m_pright;

       Type m_data;

    };

     

    ThreadTree.h

    #include "ThreadNode.h"

     

    template<typename Type> class ThreadInorderIterator;

     

    template<typename Type> class ThreadTree{

    public:

       friend class ThreadInorderIterator<Type>;

       ThreadTree():m_proot(new ThreadNode<Type>()){}

     

    ThreadInorderIterator.h

    #include "ThreadTree.h"

     

    template<typename Type> class ThreadInorderIterator{

    public:

       ThreadInorderIterator(ThreadTree<Type> &tree):m_ptree(tree),m_pcurrent(tree.m_proot){

         //InThread(m_ptree.m_proot->m_pleft,m_ptree.m_proot);

       }

      

       ThreadNode<Type> *First();

       ThreadNode<Type> *Prior();

       ThreadNode<Type> *Next();

     

       void Print();

       void Print(ThreadNode<Type> *start, int n=0);

       void InOrder();

       void InsertLeft(ThreadNode<Type> *left);

       void InsertRight(ThreadNode<Type> *right);

       ThreadNode<Type> *GetParent(ThreadNode<Type> *current);

     

      

    private:

       ThreadTree<Type> &m_ptree;

       ThreadNode<Type> *m_pcurrent;

       void InThread(ThreadNode<Type> *current,ThreadNode<Type> *pre);

    };

     

    template<typename Type> void ThreadInorderIterator<Type>::InThread(

       ThreadNode<Type> *current, ThreadNode<Type> *pre){

       if(current!=m_ptree.m_proot){

         InThread(current->m_pleft,pre);

         if(current->m_pleft==NULL){

            current->m_pleft=pre;

            current->m_nleftthread=1;

         }

         if(pre->m_pright==NULL){

            pre->m_pright=current;

            pre->m_nrightthread=1;

         }

     

         pre=current;

         InThread(current->m_pright,pre);

       }

    }

     

    template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::First(){

       while(m_pcurrent->m_nleftthread==0){

         m_pcurrent=m_pcurrent->m_pleft;

       }

       return m_pcurrent;

    }

     

    template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::Prior(){

       ThreadNode<Type> *pmove=m_pcurrent->m_pleft;

       if(0==m_pcurrent->m_nleftthread){

         while(0==pmove->m_nrightthread){

            pmove=pmove->m_pright;

         }

       }

       m_pcurrent=pmove;

       if(m_pcurrent==m_ptree.m_proot){

         return NULL;

       }

       return m_pcurrent;

    }

     

    template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::Next(){

       ThreadNode<Type> *pmove=m_pcurrent->m_pright;

       if(0==m_pcurrent->m_nrightthread){

         while(0==pmove->m_nleftthread){

            pmove=pmove->m_pleft;

         }

       }

       m_pcurrent=pmove;

       if(m_pcurrent==m_ptree.m_proot){

         return NULL;

       }

       return m_pcurrent;

    }

     

    template<typename Type> void ThreadInorderIterator<Type>::InOrder(){

       ThreadNode<Type> *pmove=m_ptree.m_proot;

       while(pmove->m_pleft!=m_ptree.m_proot){

         pmove=pmove->m_pleft;

       }

       m_pcurrent=pmove;

       cout<<"root";

       while(pmove!=m_ptree.m_proot&&pmove){

         cout<<"--->"<<pmove->m_data;

         pmove=this->Next();

       }

       cout<<"--->end";

    }

     

    template<typename Type> void ThreadInorderIterator<Type>::InsertLeft(ThreadNode<Type> *left){

       left->m_pleft=m_pcurrent->m_pleft;

       left->m_nleftthread=m_pcurrent->m_nleftthread;

       left->m_pright=m_pcurrent;

       left->m_nrightthread=1;

       m_pcurrent->m_pleft=left;

       m_pcurrent->m_nleftthread=0;

       if(0==left->m_nleftthread){

         m_pcurrent=left->m_pleft;

         ThreadNode<Type> *temp=First();

         temp->m_pright=left;

       }

       m_pcurrent=left;

    }

     

    template<typename Type> void ThreadInorderIterator<Type>::InsertRight(ThreadNode<Type> *right){

       right->m_pright=m_pcurrent->m_pright;

       right->m_nrightthread=m_pcurrent->m_nrightthread;

       right->m_pleft=m_pcurrent;

       right->m_nleftthread=1;

       m_pcurrent->m_pright=right;

       m_pcurrent->m_nrightthread=0;

       if(0==right->m_nrightthread){

         m_pcurrent=right->m_pright;

         ThreadNode<Type> *temp=First();

         temp->m_pleft=right;

       }

       m_pcurrent=right;

    }

     

    template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::GetParent(

       ThreadNode<Type> *current){

       ThreadNode<Type> *pmove=current;

       while(0==pmove->m_nleftthread){

         pmove=pmove->m_pleft;

       }

       pmove=pmove->m_pleft;

       if(pmove==m_ptree.m_proot){

         if(pmove->m_pleft==current){

            return NULL;

         }

       }

       if(pmove->m_pright==current){

         return pmove;

       }

       pmove=pmove->m_pright;

       while(pmove->m_pleft!=current){

         pmove=pmove->m_pleft;

       }

       return pmove;

    }

     

    template<typename Type> void ThreadInorderIterator<Type>::Print(ThreadNode<Type> *start, int n){

       if(start->m_nleftthread&&start->m_nrightthread){

       for(int i=0;i<n;i++){

         cout<<"     ";

       }

       if(n>=0){

         cout<<start->m_data<<"--->"<<endl;

       }

     

         return;

       }

       if(start->m_nrightthread==0){

         Print(start->m_pright,n+1);

       }

       for(int i=0;i<n;i++){

         cout<<"     ";

       }

       if(n>=0){

         cout<<start->m_data<<"--->"<<endl;

       }

       if(start->m_nleftthread==0){

         Print(start->m_pleft,n+1);

       }

    }

     

    template<typename Type> void ThreadInorderIterator<Type>::Print(){

       Print(m_ptree.m_proot->m_pleft);

    }

     

    test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "ThreadInorderIterator.h"

     

    int main(){

       ThreadTree<int> tree;

       ThreadInorderIterator<int> threadtree(tree);

       int init[10]={3,6,0,2,8,4,9,1,5,7};

       for(int i=0;i<10;){

         threadtree.InsertLeft(new ThreadNode<int>(init[i++]));

         threadtree.InsertRight(new ThreadNode<int>(init[i++]));

       }

       threadtree.Print();

       cout<<endl<<endl;

     

       threadtree.InOrder();

       return 0;

    }

      

    private:

       ThreadNode<Type> *m_proot;

    };

    13、堆

    MinHeap.h

    template<typename Type> class MinHeap{

    public:

       MinHeap(int size):m_nMaxSize(size > defaultsize ? size : defaultsize)

            ,m_pheap(new Type[m_nMaxSize]),m_ncurrentsize(0){}

       MinHeap(Type heap[],int n);    //initialize heap by a array

       ~MinHeap(){

         delete[] m_pheap;

       }

     

    public:

       bool Insert(const Type item);  //insert element

       bool Delete(const Type item);  //delete element

       bool IsEmpty() const{      

         return m_ncurrentsize == 0;

       }

       bool IsFull() const{

         reutrn m_ncurrentsize == m_nMaxSize;

       }

       void Print(const int start=0, int n=0);      

     

    private:

        //adjust the elements of the child tree with the root of start from top to bottom

       void Adjust(const int start, const int end); 

     

    private:

       static const int defaultsize = 100;

       const int m_nMaxSize; 

       Type *m_pheap;

       int m_ncurrentsize;

    };

     

    template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){

       int i = start,j = i*2+1;    //get the position of the child of i

       Type temp=m_pheap[i];

       while(j <= end){   

         if(j<end && m_pheap[j]>m_pheap[j+1]){   //left>right

            j++;

         }

         if(temp <= m_pheap[j]){ //adjust over

            break;

         }

         else{   //change the parent and the child, then adjust the child

            m_pheap[i] = m_pheap[j];

            i = j;

            j = 2*i+1;

         }

       }

       m_pheap[i] = temp;

    }

     

    template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(

         n > defaultsize ? n : defaultsize){

       m_pheap = new Type[m_nMaxSize];

       for(int i=0; i<n; i++){

         m_pheap[i] = heap[i];

       }

       m_ncurrentsize = n;

       int pos=(n-2)/2;  //Find the last child tree which has more than one element;

       while(pos>=0){

         Adjust(pos, n-1);

         pos--;

       }

    }

     

    template<typename Type> bool MinHeap<Type>::Insert(const Type item){

       if(m_ncurrentsize == m_nMaxSize){

         cerr<<"Heap Full!"<<endl;

         return 0;

       }

       m_pheap[m_ncurrentsize] = item;

       int j = m_ncurrentsize, i = (j-1)/2;    //get the position of the parent of j

       Type temp = m_pheap[j];

       while(j > 0){   //adjust from bottom to top

         if(m_pheap[i] <= temp){

            break;

         }

         else{

            m_pheap[j] = m_pheap[i];

            j = i;

            i = (j-1)/2;

         }

       }

       m_pheap[j] = temp;

       m_ncurrentsize++;

       return 1;

    }

     

    template<typename Type> bool MinHeap<Type>::Delete(const Type item){

       if(0 == m_ncurrentsize){

         cerr<<"Heap Empty!"<<endl;

         return 0;

       }

       for(int i=0; i<m_ncurrentsize; i++){

         if(m_pheap[i] == item){

            m_pheap[i] = m_pheap[m_ncurrentsize-1]; //filled with the last element

            Adjust(i,m_ncurrentsize-2);     //adjust the tree with start of i

            m_ncurrentsize--;

            i=0;

         }

       }

       return 1;

    }

     

    template<typename Type> void MinHeap<Type>::Print(const int start, int n){

       if(start >= m_ncurrentsize){

         return;

       }

       Print(start*2+2, n+1);  //print the right child tree

     

       for(int i=0; i<n; i++){

         cout<<"    ";

       }

       cout<< m_pheap[start] << "--->" << endl;

     

       Print(start*2+1, n+1);  //print the left child tree

    }

     

    test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "MinHeap.h"

     

    int main(){

       int init[30]={17,6,22,29,14,0,21,13,27,18,2,28,8

            ,26,3,12,20,4,9,23,15,1,11,5,19,24,16,7,10,25};

       MinHeap<int> heap(init,30);

       heap.Print();

       cout<<endl<<endl<<endl;

     

       heap.Insert(20);

       heap.Print();

       cout<<endl<<endl<<endl;

      

       heap.Delete(20);

       heap.Print();

       cout<<endl<<endl<<endl;

       return 0;

    }

    14、哈夫曼树

    BinTreeNode.h

    template<typename Type> class BinaryTree;

     

    template<typename Type> void Huffman(Type *, int, BinaryTree<Type> &);

     

    template<typename Type> class BinTreeNode{

    public:

       friend class BinaryTree<Type>;

        friend void Huffman<Type>(Type *, int, BinaryTree<Type> &);

       BinTreeNode():m_pleft(NULL),m_pright(NULL){}

       BinTreeNode(Type item,BinTreeNode<Type> *left=NULL,BinTreeNode<Type> *right=NULL)

         :m_data(item),m_pleft(left),m_pright(right){}

       void Destroy(){   //destroy the tree with the root of the node

         if(this!=NULL){

            this->m_pleft->Destroy();

            this->m_pright->Destroy();

            delete this;

         }

       }

        Type GetData(){

            return m_data;

        }

        BinTreeNode<Type> *Copy(const BinTreeNode<Type> *copy);   //copy the node

     

    private:

       BinTreeNode<Type> *m_pleft,*m_pright;

       Type m_data;

    };

     

    template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::Copy(const BinTreeNode<Type> *copy){

       if(copy==NULL){

         return NULL;

       }

     

       BinTreeNode<Type> *temp=new BinTreeNode<Type>(copy->m_data);

       temp->m_pleft=Copy(copy->m_pleft);

       temp->m_pright=Copy(copy->m_pright);

       return temp;

    }

     

    BinaryTree.h

    #include "BinTreeNode.h"

     

    template<typename Type> void Huffman(Type *, int, BinaryTree<Type> &);

     

    template<typename Type> class BinaryTree{

    public:

       

        BinaryTree(BinaryTree<Type> &bt1, BinaryTree<Type> &bt2){

            m_proot = new BinTreeNode<Type>(bt1.m_proot->m_data

                + bt2.m_proot->m_data, bt1.m_proot, bt2.m_proot);

        }

        BinaryTree(Type item){

            m_proot = new BinTreeNode<Type>(item);

        }

        BinaryTree(const BinaryTree<Type> &copy){

            this->m_proot = copy.m_proot;

        }

        BinaryTree(){

            m_proot = NULL;

        }

        void Destroy(){

            m_proot->Destroy();

        }

        ~BinaryTree(){

    //        m_proot->Destroy();

        }

        

        BinaryTree<Type>& operator=(BinaryTree<Type> copy);   //evaluate node

        friend void Huffman<Type>(Type *, int, BinaryTree<Type> &);

        friend bool operator < <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);

        friend bool operator > <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);

        friend bool operator <= <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);

        friend ostream& operator<< <Type>(ostream& ,BinaryTree<Type>&);  //output the data

    private:

       BinTreeNode<Type> *m_proot;

        void Print(BinTreeNode<Type> *start,int n=0);  //print the tree with the root of start

    };

     

    template<typename Type> bool operator <(BinaryTree<Type> &l, BinaryTree<Type> &r){

        return l.m_proot->GetData() < r.m_proot->GetData();

    }

     

    template<typename Type> bool operator >(BinaryTree<Type> &l, BinaryTree<Type> &r){

        return l.m_proot->GetData() > r.m_proot->GetData();

    }

     

    template<typename Type> bool operator <=(BinaryTree<Type> &l, BinaryTree<Type> &r){

        return
    l.m_proot->GetData() <= r.m_proot->GetData();

    }

     

     

    template<typename Type> void BinaryTree<Type>::Print(BinTreeNode<Type> *start, int n){

       if(start==NULL){

         for(int i=0;i<n;i++){

            cout<<"     ";

         }

         cout<<"NULL"<<endl;

         return;

       }

       Print(start->m_pright,n+1); //print the right subtree

       for(int i=0;i<n;i++){  //print blanks with the height of the node

         cout<<"     ";

       }

       if(n>=0){

         cout<<start->m_data<<"--->"<<endl;//print the node

       }

       Print(start->m_pleft,n+1);  //print the left subtree

    }

     

    template<typename Type> ostream& operator<<(ostream& os,BinaryTree<Type>& out){

       out.Print(out.m_proot);

       return os;

    }

     

    template<typename Type> BinaryTree<Type>& BinaryTree<Type>::operator=(BinaryTree<Type> copy){

       m_proot=m_proot->Copy(copy.m_proot);

        return *this;

    }

     

    MinHeap.h

    template<typename Type> class MinHeap{

    public:

       MinHeap(Type heap[],int n);    //initialize heap by a array

       ~MinHeap(){

         delete[] m_pheap;

       }

     

    public:

        bool Insert(const Type item);

        bool DeleteMin(Type &first);

     

    private:

       void Adjust(const int start, const int end);  //adjust the elements from start to end

     

     

    private:

       const int m_nMaxSize; 

       Type *m_pheap;

       int m_ncurrentsize;

    };

     

    template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){

       int i = start,j = i*2+1;

       Type temp=m_pheap[i];

       while(j <= end){

         if(j<end && m_pheap[j]>m_pheap[j+1]){

            j++;

         }

         if(temp <= m_pheap[j]){

            break;

         }

         else{

            m_pheap[i] = m_pheap[j];

            i = j;

            j = 2*i+1;

         }

       }

       m_pheap[i] = temp;

    }

     

    template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(n){

       m_pheap = new Type[m_nMaxSize];

       for(int i=0; i<n; i++){

         m_pheap[i] = heap[i];

       }

       m_ncurrentsize = n;

       int pos=(n-2)/2;  //Find the last tree which has more than one element;

       while(pos>=0){

         Adjust(pos, n-1);

         pos--;

       }

    }

     

    template<typename Type> bool MinHeap<Type>::DeleteMin(Type &first){

        first = m_pheap[0];

        m_pheap[0] = m_pheap[m_ncurrentsize-1];

        m_ncurrentsize--;

        Adjust(0, m_ncurrentsize-1);

        return 1;

    }

     

    template<typename Type> bool MinHeap<Type>::Insert(const Type item){

       if(m_ncurrentsize == m_nMaxSize){

         cerr<<"Heap Full!"<<endl;

         return 0;

       }

       m_pheap[m_ncurrentsize] = item;

       int j = m_ncurrentsize, i = (j-1)/2;

       Type temp = m_pheap[j];

       while(j > 0){

         if(m_pheap[i] <= temp){

            break;

         }

         else{

            m_pheap[j] = m_pheap[i];

            j = i;

            i = (j-1)/2;

         }

       }

       m_pheap[j] = temp;

       m_ncurrentsize++;

       return 1;

    }

     

    Huffman.h

    #include "BinaryTree.h"

    #include "MinHeap.h"

     

    template<typename Type> void Huffman(Type *elements, int n, BinaryTree<Type> &tree){

        BinaryTree<Type> first, second;

        BinaryTree<Type> node[20];

        for (int i=0; i<n; i++){

            node[i].m_proot = new BinTreeNode<Type>(elements[i]);

        }

        MinHeap<BinaryTree<Type> > heap(node, n);

     

        for (int i=0; i<n-1; i++){

            heap.DeleteMin(first);

            heap.DeleteMin(second);

           

            //using the first and the second minimize element create new tree

            if (first.m_proot->GetData() == second.m_proot->GetData()){

                tree = *(new BinaryTree<Type>(second, first));

            }

            else {

                tree = *(new BinaryTree<Type>(first, second));

            }

     

            heap.Insert(tree);

        }

    }

     

    Test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "Huffman.h"

     

    int main(){

        BinaryTree<int> tree;

        int init[10]={3,6,0,2,8,4,9,1,5,7};

        Huffman(init,10,tree);

        cout << tree;

        tree.Destroy();

        return 0;

    }

    15、树

    QueueNode.h

    template<typename Type> class LinkQueue;

     

    template<typename Type> class QueueNode{

    private:

       friend class LinkQueue<Type>;

       QueueNode(const Type item,QueueNode<Type> *next=NULL)

         :m_data(item),m_pnext(next){}

    private:

       Type m_data;

       QueueNode<Type> *m_pnext;

    };

     

    LinkQueue.h

    #include "QueueNode.h"

     

    template<typename Type> class LinkQueue{

    public:

       LinkQueue():m_prear(NULL),m_pfront(NULL){}

       ~LinkQueue(){

         MakeEmpty();

       }

       void Append(const Type item);

       Type Delete();

       Type GetFront();

       void MakeEmpty();

       bool IsEmpty() const{

         return m_pfront==NULL;

       }

       void Print();

     

    private:

       QueueNode<Type> *m_prear,*m_pfront;

    };

     

    template<typename Type> void LinkQueue<Type>::MakeEmpty(){

       QueueNode<Type> *pdel;

       while(m_pfront){

         pdel=m_pfront;

         m_pfront=m_pfront->m_pnext;

         delete pdel;

       }

    }

     

    template<typename Type> void LinkQueue<Type>::Append(const Type item){

       if(m_pfront==NULL){

         m_pfront=m_prear=new QueueNode<Type>(item);

       }

       else{

         m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

       }

    }

     

    template<typename Type> Type LinkQueue<Type>::Delete(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       QueueNode<Type> *pdel=m_pfront;

       Type temp=m_pfront->m_data;

       m_pfront=m_pfront->m_pnext;

       delete pdel;

       return temp;

    }

     

    template<typename Type> Type LinkQueue<Type>::GetFront(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       return m_pfront->m_data;

    }

     

    template<typename Type> void LinkQueue<Type>::Print(){

       QueueNode<Type> *pmove=m_pfront;

       cout<<"front";

       while(pmove){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->rear"<<endl<<endl<<endl;

    }

     

    TreeNode.h

    template<typename Type> class Tree;

     

    template<typename Type> class TreeNode{

    public:

       friend class Tree<Type>;

     

    private:

       Type m_data;

       TreeNode<Type> *m_pfirst,*m_pnext;

       TreeNode():m_pfirst(NULL), m_pnext(NULL){}

       TreeNode(Type item, TreeNode<Type> *first = NULL, TreeNode<Type> *next = NULL)

         :m_data(item), m_pfirst(first), m_pnext(next){}

    };

     

    Tree.h

    #include "TreeNode.h"

    #include "LinkQueue.h"

     

    template<typename Type> class Tree{

    public:

        Tree():m_proot(NULL), m_pcurrent(NULL){}

    public:

        TreeNode<Type> *GetCurrent(){ //Get the current node

            return m_pcurrent;

        }

        void SetCurrent(TreeNode<Type> *current){ //set the current node

            m_pcurrent = current;

        }

        bool Insert(Type item);    //insert an new node to current node

        void Remove(Type item);    //delete the node whose data is equal to item

        void Remove(TreeNode<Type> *current); //delete the node

        bool Find(Type item);   //find the node whose data is equal to item

        void PrintChild(TreeNode<Type> *current); //print the child tree

        TreeNode<Type> *Parent(TreeNode<Type> *current);  //get the parent

     

        void Print();         //print the tree

        void PreOrder(TreeNode<Type> *root); //ordering the tree by visiting the root first

        void PostOrder(TreeNode<Type> *root); //ordering the tree by visiting the root last

        void LevelOrder(TreeNode<Type> *root);  //ordering the tree by level

        void PreOrder();

        void PostOrder();

        void LevelOrder();

     

    private:

       TreeNode<Type> *m_proot,*m_pcurrent; 

        bool Find(TreeNode<Type> *root, Type item);

        void Remove(TreeNode<Type> *root, Type item);

        TreeNode<Type> *Parent(TreeNode<Type> *root, TreeNode<Type> *current);

        void Print(TreeNode<Type> *start, int n=0);

    };

     

    template<typename Type> bool Tree<Type>::Insert(Type item){

        TreeNode<Type> *newnode = new TreeNode<Type>(item);

        if (NULL == newnode){

            cout << "Application Error!" <<endl;

            exit(1);

        }

        if (NULL == m_proot){

            m_proot = newnode;

            m_pcurrent = m_proot;

            return 1;

        }

        if (NULL == m_pcurrent){

            cerr << "insert error!" <<endl;

            return 0;

        }

     

        if(NULL == m_pcurrent->m_pfirst){

            m_pcurrent->m_pfirst = newnode;

            m_pcurrent = newnode;

            return 1;

        }

        TreeNode<Type> *pmove = m_pcurrent->m_pfirst;

        while(pmove->m_pnext){

            pmove = pmove->m_pnext;

        }

        pmove->m_pnext = newnode;

        m_pcurrent = newnode;

        return 1;

     

    }

     

    template<typename Type> void Tree<Type>::Remove(TreeNode<Type> *current){

        if(NULL == current){

            return;

        }

        TreeNode<Type> *temp = Parent(current);

        if(NULL == temp){

            TreeNode<Type> *pmove = current->m_pfirst;

            if(NULL != pmove->m_pfirst){

                pmove=pmove->m_pfirst;

                while(pmove->m_pnext){

                    pmove = pmove->m_pnext;

                }

                pmove->m_pnext = current->m_pfirst->m_pnext;

                current->m_pfirst->m_pnext = NULL;

            }

            else{

                pmove->m_pfirst = pmove->m_pnext;

            }

            m_proot = current->m_pfirst;

        }

        else{

            if(temp->m_pfirst == current){

                TreeNode<Type> *pmove = current->m_pfirst;

                if (pmove){

                    while (pmove->m_pnext){

                        pmove = pmove->m_pnext;

                    }

                    pmove->m_pnext = current->m_pnext;

                }

                else{

                    current->m_pfirst = current->m_pnext;

                }

     

            }

            else{

                TreeNode<Type> *pmove = temp->m_pfirst;

                while(pmove->m_pnext != current){

                    pmove = pmove->m_pnext;

                }

                pmove->m_pnext = current->m_pnext;

                while(pmove->m_pnext){

                    pmove = pmove->m_pnext;

                }

                pmove->m_pnext = current->m_pfirst;

            }

        }

        delete current;

    }

     

    template<typename Type> void Tree<Type>::Remove(TreeNode<Type> *root, Type item){

        if(NULL == root){

            return;

        }

        if(root->m_pfirst){

            TreeNode<Type> *pmove=root->m_pfirst;

            while(pmove){

                Remove(pmove, item);

                pmove = pmove->m_pnext;

            }

        }

        if(root->m_data == item){

            Remove(root);

        }

     

    }

    template<typename Type> void Tree<Type>::Remove(Type item){

        return Remove(m_proot, item);

    }

     

    template<typename Type> TreeNode<Type>* Tree<Type>::Parent(

        TreeNode<Type> *root, TreeNode<Type> *current){

            if(NULL == root){

                return NULL;

            }

            TreeNode<Type> *pmove=root->m_pfirst,*temp;

            if(NULL != pmove){

                while(pmove){

                    if(pmove == current){

                        return root;

                    }

                    pmove = pmove->m_pnext;

                }

            }

            pmove = root->m_pfirst;

            while(pmove){

                temp = Parent(pmove, current);

                if(temp){

                    return temp;

                }

                pmove = pmove->m_pnext;

            }

            return NULL;

    }

     

    template<typename Type> TreeNode<Type>* Tree<Type>::Parent(TreeNode<Type> *current){

        return Parent(m_proot,current);

    }

     

    template<typename Type> void Tree<Type>::PrintChild(TreeNode<Type> *current){

        TreeNode<Type> *pmove = current->m_pfirst;

        cout<<"first";

        if(NULL != pmove){

            cout<<"--->"<<pmove->m_data;

        }

        while(pmove->m_pnext){

            cout<<"--->"<<pmove->m_data;

            pmove = pmove->m_pnext;

        }

    }

     

    template<typename Type> bool Tree<Type>::Find(TreeNode<Type> *root, Type item){

        if (root->m_data == item){

            return 1;

        }

        if (NULL == root){

            return 0;

        }

        TreeNode<Type> *pmove=root->m_pfirst;

        if (NULL == pmove){

            return 0;

        }

        while (pmove){

            if (Find(pmove, item)){

                return 1;

            }

            pmove = pmove->m_pnext;

        }

        return 0;

    }

     

    template<typename Type> bool Tree<Type>::Find(Type item){

        return Find(m_proot,item);

    }

     

    template<typename Type> void Tree<Type>::Print(TreeNode<Type> *start, int n = 0){

        if (NULL == start){

            for (int i=0; i<n; i++){

                cout << "     ";

            }

            cout << "NULL" << endl;

            return;

        }

        TreeNode<Type> *pmove = start->m_pfirst;

        Print(pmove, n+1);

     

        for (int i=0; i<n; i++){

            cout << "     ";

        }

        cout << start->m_data << "--->" <<endl;

     

        if (NULL == pmove){  

            return;

        }

        pmove = pmove->m_pnext;

        while (pmove){

            Print(pmove, n+1);

            pmove = pmove->m_pnext;

        }

    }

     

    template<typename Type> void Tree<Type>::Print(){

        Print(m_proot);

    }

     

    template<typename Type> void Tree<Type>::PreOrder(TreeNode<Type> *root){

        if (NULL == root){

            return;

        }

        cout << root->m_data;

        TreeNode<Type> *pmove = root->m_pfirst;

        while (pmove){

            PreOrder(pmove);

            pmove = pmove->m_pnext;

        }

    }

     

    template<typename Type> void Tree<Type>::PostOrder(TreeNode<Type> *root){

        if (NULL == root){

            return;

        }

        TreeNode<Type> *pmove = root->m_pfirst;

        while (pmove){

            PostOrder(pmove);

            pmove = pmove->m_pnext;

        }

        cout << root->m_data;

    }

     

    template<typename Type> void Tree<Type>::PreOrder(){

        PreOrder(m_proot);

    }

     

    template<typename Type> void Tree<Type>::PostOrder(){

        PostOrder(m_proot);

    }

     

    template<typename Type> void Tree<Type>::LevelOrder(TreeNode<Type> *root){ //using queue

        LinkQueue<TreeNode<Type> *> queue;

        TreeNode<Type> *pmove, *ptemp;

        if (root != NULL){

            queue.Append(root);

            while (!queue.IsEmpty()){

                ptemp = queue.Delete();

                cout << ptemp->m_data;

                pmove = ptemp->m_pfirst;

                while(pmove){

                    queue.Append(pmove);

                    pmove = pmove->m_pnext;

                }

            }

        }

    }

     

    template<typename Type> void Tree<Type>::LevelOrder(){

        LevelOrder(m_proot);

    }

     

    test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "Tree.h"

     

    int main(){

       Tree<int> tree;

        int init[10]={3,6,0,2,8,4,9,1,5,7};

        for (int i=0; i<10; i++){

           tree.Insert(init[i]);

            if (1 == i % 2){

                tree.SetCurrent(tree.Parent(tree.GetCurrent()));

            }

        }

        tree.Print();

        cout << endl <<endl << endl;

       

        tree.Remove(3);

        tree.Print();

        cout << endl <<endl << endl;

     

        cout << tree.Find(5) << endl << tree.Find(11) <<endl;

       

        tree.PreOrder();

        cout << endl;

        tree.PostOrder();

        cout << endl;

        tree.LevelOrder();

       return 0;

    }

    16、B+树

    BTreeNode.h

    template<typename Type> class BTree;

     

    template<typename Type> class BTreeNode{

    public:

        friend BTree<Type>;

        BTreeNode(): m_nMaxSize(0), m_ptr(NULL), m_pparent(NULL){}

        BTreeNode(int size): m_nsize(0), m_nMaxSize(size), m_pparent(NULL){

            m_pkey = new Type[size+1];

            m_ptr = new BTreeNode<Type> *[size+1];

            for (int i=0; i<=size; i++){

                m_ptr[i] = NULL;

                m_pkey[i] = this->m_Infinity;

            }

        }

        void Destroy(BTreeNode<Type> *root);

        ~BTreeNode(){

         if (m_nMaxSize){

            delete[] m_pkey;

            for (int i=0; i<=m_nMaxSize; i++){

              m_ptr[i] = NULL;

            }

         }

        }

        bool IsFull(){

            return m_nsize == m_nMaxSize;

        }

        Type GetKey(int i){

            if (this){

                return this->m_pkey[i];

            }

            return -1;

        }

     

    private:

        int m_nsize;

        int m_nMaxSize;     //the Max Size of key

        Type *m_pkey;

        BTreeNode<Type> *m_pparent;

        BTreeNode<Type> **m_ptr;

        static const Type m_Infinity = 10000;

    };

     

    template<typename Type> struct Triple{

        BTreeNode<Type> *m_pfind;

        int m_nfind;

        bool m_ntag;

    };

     

    template<typename Type> void BTreeNode<Type>::Destroy(BTreeNode<Type> *root){

        if (NULL == root){

            return;

        }

        for (int i=0; i<root->m_nsize; i++){

            Destroy(root->m_ptr[i]);

        }

        delete root;

    }

     

    BTree.h

    #include "BTreeNode.h"

     

     

    template<typename Type> class BTree{

    public:

        BTree(int size): m_nMaxSize(size), m_proot(NULL){}

        ~BTree();

        Triple<Type> Search(const Type item);

        int Size();

        int Size(BTreeNode<Type> *root);

        bool Insert(const Type item);   //insert item

        bool Remove(const Type item);   //delete item

        void Print();                   //print the BTree

        BTreeNode<Type> *GetParent(const Type item);   

     

    private:

        //insert the pright and item to pinsert in the nth place;

        void InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright);

     

        void PreMove(BTreeNode<Type> *root, int n); //move ahead

       

        //merge the child tree

        void Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n);

     

        //adjust with the parent and the left child tree

        void LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n);

     

        //adjust with the parent and the left child tree

        void RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n);

     

        void Print(BTreeNode<Type> *start, int n = 0);

       

    private:

        BTreeNode<Type> *m_proot;

        const int m_nMaxSize;

    };

     

     

    template<typename Type> BTree<Type>::~BTree(){

        m_proot->Destroy(m_proot);

    }

    template<typename Type> Triple<Type> BTree<Type>::Search(const Type item){

        Triple<Type> result;

        BTreeNode<Type> *pmove = m_proot, *parent = NULL;

        int i = 0;

        while (pmove){

            i = -1;

            while (item > pmove->m_pkey[++i]); //find the suit position

            if (pmove->m_pkey[i] == item){

                result.m_pfind = pmove;

                result.m_nfind = i;

                result.m_ntag = 1;

                return result;

            }

            parent = pmove;

            pmove = pmove->m_ptr[i];    //find in the child tree

        }

        result.m_pfind = parent;

        result.m_nfind = i;

        result.m_ntag = 0;

        return result;

    }

     

    template<typename Type> void BTree<Type>::InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright){

        pinsert->m_nsize++;

        for (int i=pinsert->m_nsize; i>n; i--){

            pinsert->m_pkey[i] = pinsert->m_pkey[i-1];

            pinsert->m_ptr[i+1] = pinsert->m_ptr[i];

        }

        pinsert->m_pkey[n] = item;

        pinsert->m_ptr[n+1] = pright;

     

        if (pinsert->m_ptr[n+1]){       //change the right child tree's parent

            pinsert->m_ptr[n+1]->m_pparent = pinsert;

            for (int i=0; i<=pinsert->m_ptr[n+1]->m_nsize; i++){

                if (pinsert->m_ptr[n+1]->m_ptr[i]){

                    pinsert->m_ptr[n+1]->m_ptr[i]->m_pparent = pinsert->m_ptr[n+1];

                }

            }

        }

       

    }

    template<typename Type> bool BTree<Type>::Insert(const Type item){

        if (NULL == m_proot){       //insert the first node

            m_proot = new BTreeNode<Type>(m_nMaxSize);

            m_proot->m_nsize = 1;

            m_proot->m_pkey[1] = m_proot->m_pkey[0];

            m_proot->m_pkey[0] = item;

            m_proot->m_ptr[0] = m_proot->m_ptr[1] =NULL;

            return 1;

        }

        Triple<Type> find = this->Search(item); //search the position

        if (find.m_ntag){

            cerr << "The item is exist!" << endl;

            return 0;

        }

        BTreeNode<Type> *pinsert = find.m_pfind, *newnode;

        BTreeNode<Type> *pright = NULL, *pparent;

        Type key = item;

        int n = find.m_nfind;

     

        while (1){

            if (pinsert->m_nsize < pinsert->m_nMaxSize-1){  //There is some space

                InsertKey(pinsert, n, key, pright);

                return 1;

            }

     

            int m = (pinsert->m_nsize + 1) / 2;     //get the middle item

            InsertKey(pinsert, n, key, pright);     //insert first, then break up

            newnode = new BTreeNode<Type>(this->m_nMaxSize);//create the newnode for break up

     

            //break up

            for (int i=m+1; i<=pinsert->m_nsize; i++){     

                newnode->m_pkey[i-m-1] = pinsert->m_pkey[i];

                newnode->m_ptr[i-m-1] = pinsert->m_ptr[i];

                pinsert->m_pkey[i] = pinsert->m_Infinity;

                pinsert->m_ptr[i] = NULL;

            }

            newnode->m_nsize = pinsert->m_nsize - m - 1;

            pinsert->m_nsize = m;

     

            for (int i=0; i<=newnode->m_nsize; i++){    //change the parent

                if (newnode->m_ptr[i]){

                    newnode->m_ptr[i]->m_pparent = newnode;

                    for (int j=0; j<=newnode->m_ptr[i]->m_nsize; j++){

                        if (newnode->m_ptr[i]->m_ptr[j]){

                            newnode->m_ptr[i]->m_ptr[j]->m_pparent = newnode->m_ptr[i];

                        }

                    }

                }

            }

            for (int i=0; i<=pinsert->m_nsize; i++){    //change the parent

                if (pinsert->m_ptr[i]){

                    pinsert->m_ptr[i]->m_pparent = pinsert;

                    for (int j=0; j<=pinsert->m_nsize; j++){

                        if (pinsert->m_ptr[i]->m_ptr[j]){

                            pinsert->m_ptr[i]->m_ptr[j]->m_pparent = pinsert->m_ptr[i];

                        }

                    }

                }

            }

            //break up over

           

            key = pinsert->m_pkey[m];

            pright = newnode;

            if (pinsert->m_pparent){    //insert the key to the parent

                pparent = pinsert->m_pparent;

                n = -1;

                pparent->m_pkey[pparent->m_nsize] = pparent->m_Infinity;

                while (key > pparent->m_pkey[++n]);

                newnode->m_pparent = pinsert->m_pparent;

                pinsert = pparent;

            }

            else {              //create new root

                m_proot = new BTreeNode<Type>(this->m_nMaxSize);

                m_proot->m_nsize = 1;

                m_proot->m_pkey[1] = m_proot->m_pkey[0];

                m_proot->m_pkey[0] = key;

                m_proot->m_ptr[0] = pinsert;

                m_proot->m_ptr[1] = pright;

                newnode->m_pparent = pinsert->m_pparent = m_proot;

                return 1;

            }

        }

    }

     

    template<typename Type> void BTree<Type>::PreMove(BTreeNode<Type> *root, int n){

        root->m_pkey[root->m_nsize] = root->m_Infinity;

        for (int i=n; i<root->m_nsize; i++){

            root->m_pkey[i] = root->m_pkey[i+1];

            root->m_ptr[i+1] = root->m_ptr[i+2];

        }

       

        root->m_nsize--;

    }

     

    template<typename Type> void BTree<Type>::Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n){

        pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[n];

        BTreeNode<Type> *ptemp;

       

        for (int i=0; i<=pright->m_nsize; i++){ //merge the two child tree and the parent

            pleft->m_pkey[pleft->m_nsize+i+1] = pright->m_pkey[i];

            pleft->m_ptr[pleft->m_nsize+i+1] = pright->m_ptr[i];

            ptemp = pleft->m_ptr[pleft->m_nsize+i+1];

            if (ptemp){         //change thd right child tree's parent

                ptemp->m_pparent = pleft;

                for (int j=0; j<=ptemp->m_nsize; j++){

                    if (ptemp->m_ptr[j]){

                        ptemp->m_ptr[j]->m_pparent = ptemp;

                    }

                }

            }

        }

       

        pleft->m_nsize = pleft->m_nsize + pright->m_nsize + 1;

        delete pright;

        PreMove(pparent, n);   

    //    this->Print();

    }

     

    template<typename Type> void BTree<Type>::LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n){

        BTreeNode<Type> *pleft = pparent->m_ptr[n-1], *ptemp;

        if (pleft->m_nsize > min-1){

            for (int i=pright->m_nsize+1; i>0; i--){

                pright->m_pkey[i] = pright->m_pkey[i-1];

                pright->m_ptr[i] = pright->m_ptr[i-1];

            }

            pright->m_pkey[0] = pparent->m_pkey[n-1];

            

            pright->m_ptr[0] = pleft->m_ptr[pleft->m_nsize];

            ptemp = pright->m_ptr[0];

            if (ptemp){     //change the tree's parent which is moved

                ptemp->m_pparent = pright;

                for (int i=0; i<ptemp->m_nsize; i++){

                    if (ptemp->m_ptr[i]){

                        ptemp->m_ptr[i]->m_pparent = ptemp;

                    }

                }

            }

            pparent->m_pkey[n-1] = pleft->m_pkey[pleft->m_nsize-1];

            pleft->m_pkey[pleft->m_nsize] = pleft->m_Infinity;

            pleft->m_nsize--;

            pright->m_nsize++;

        }

        else {

            Merge(pleft, pparent, pright, n-1);

        }

    //       this->Print();

    }

     

    template<typename Type> void BTree<Type>::RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n){

        BTreeNode<Type> *pright = pparent->m_ptr[1], *ptemp;

        if (pright && pright->m_nsize > min-1){

            pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[0];

            pparent->m_pkey[0] = pright->m_pkey[0];

            pleft->m_ptr[pleft->m_nsize+1] = pright->m_ptr[0];

            ptemp = pleft->m_ptr[pleft->m_nsize+1];

            if (ptemp){         //change the tree's parent which is moved

                ptemp->m_pparent = pleft;

                for (int i=0; i<ptemp->m_nsize; i++){

                    if (ptemp->m_ptr[i]){

                        ptemp->m_ptr[i]->m_pparent = ptemp;

                    }

                }

            }

            pright->m_ptr[0] = pright->m_ptr[1];

            pleft->m_nsize++;

            PreMove(pright,0);

        }

        else {

            Merge(pleft, pparent, pright, 0);

        }

    }

     

     

    template<typename Type> bool BTree<Type>::Remove(const Type item){

        Triple<Type> result = this->Search(item);

        if (!result.m_ntag){

            return 0;

        }

        BTreeNode<Type> *pdel, *pparent, *pmin;

        int n = result.m_nfind;

        pdel = result.m_pfind;

     

        if (pdel->m_ptr[n+1] != NULL){  //change into delete leafnode

            pmin = pdel->m_ptr[n+1];

            pparent = pdel;

            while (pmin != NULL){

                pparent = pmin;

                pmin = pmin->m_ptr[0];

            }

            pdel->m_pkey[n] = pparent->m_pkey[0];

            pdel = pparent;

            n = 0;

        }

     

        PreMove(pdel, n); //delete the node

     

        int min = (this->m_nMaxSize + 1) / 2;

        while (pdel->m_nsize < min-1){  //if it is not a BTree, then adjust

            n = 0;

            pparent = pdel->m_pparent;

            if (NULL == pparent)

            {

                return 1;

            }

            while (n<= pparent->m_nsize && pparent->m_ptr[n]!=pdel){

                n++;

            }

            if (!n){

                RightAdjust(pdel, pparent, min, n); //adjust with the parent and the right child tree

            }

            else {

                LeftAdjust(pdel, pparent, min, n); //adjust with the parent and the left child tree

            }

            pdel = pparent;

            if (pdel == m_proot){

                break;

            }

        }

        if (!m_proot->m_nsize){         //the root is merged

            pdel = m_proot->m_ptr[0];

            delete m_proot;

            m_proot = pdel;

            m_proot->m_pparent = NULL;

            for (int i=0; i<m_proot->m_nsize; i++){

                if (m_proot->m_ptr[i]){

                    m_proot->m_ptr[i]->m_pparent = m_proot;

                }

            }

        }

        return 1;

    }

     

    template<typename Type> void BTree<Type>::Print(BTreeNode<Type> *start, int n){

        if (NULL == start){

            return;

        }

        if (start->m_ptr[0]){

            Print(start->m_ptr[0], n+1);    //print the first child tree

        }

        else {

            for (int j=0; j<n; j++){

                cout << "     ";

            }

            cout << "NULL" << endl;

        }

     

        for (int i=0; i<start->m_nsize; i++){   //print the orther child tree

            for (int j=0; j<n; j++){

                cout << "     ";

            }

            cout << start->m_pkey[i] << "--->" <<endl;

            if (start->m_ptr[i+1]){

                Print(start->m_ptr[i+1], n+1);

            }

            else {

                for (int j=0; j<n; j++){

                    cout << "     ";

                }

                cout << "NULL" << endl;

            }

        }

    }

     

    template<typename Type> void BTree<Type>::Print(){

        Print(m_proot);

    }

     

    template<typename Type> int BTree<Type>::Size(BTreeNode<Type> *root){

        if (NULL == root){

            return 0;

        }

        int size=root->m_nsize;

        for (int i=0; i<=root->m_nsize; i++){

            if (root->m_ptr[i]){

                size += this->Size(root->m_ptr[i]);

            }

        }

        return size;

    }

     

    template<typename Type> int BTree<Type>::Size(){

        return this->Size(this->m_proot);

    }

     

    template<typename Type> BTreeNode<Type>* BTree<Type>::GetParent(const Type item){

        Triple<Type> result = this->Search(item);

        return result.m_pfind->m_pparent;

    }

    test.cpp

    #include <iostream>

    #include <cstdlib>

     

    using namespace std;

     

    #include "BTree.h"

     

    int main(){

        BTree<int> btree(3);

        int init[]={1,3,5,7,4,2,8,0,6,9,29,13,25,11,32,55,34,22,76,45

            ,14,26,33,88,87,92,44,54,23,12,21,99,19,27,57,18,72,124,158,234

        ,187,218,382,122,111,222,333,872,123};

        for (int i=0; i<49; i++){

            btree.Insert(init[i]);

     

        }

       

        btree.Print();

        cout << endl << endl << endl;

       

        Triple<int> result = btree.Search(13);

        cout << result.m_pfind->GetKey(result.m_nfind) << endl;

        cout << endl << endl << endl;

     

        for (int i=0; i<49; i++){

            btree.Remove(init[i]);

     

            btree.Print();

            cout << endl << endl << endl;

                   

        }

       

        return 0;

    }

    17、图

    MinHeap.h

    template<typename Type> class MinHeap{

    public:

       MinHeap(Type heap[],int n);    //initialize heap by a array

       ~MinHeap(){

         delete[] m_pheap;

       }

     

    public:

        bool Insert(const Type item);

        bool DeleteMin(Type &first);

     

    private:

       void Adjust(const int start, const int end);  //adjust the elements from start to end

     

     

    private:

       const int m_nMaxSize; 

       Type *m_pheap;

       int m_ncurrentsize;

    };

     

    template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){

       int i = start,j = i*2+1;

       Type temp=m_pheap[i];

       while(j <= end){

         if(j<end && m_pheap[j]>m_pheap[j+1]){

            j++;

         }

         if(temp <= m_pheap[j]){

            break;

         }

         else{

            m_pheap[i] = m_pheap[j];

            i = j;

            j = 2*i+1;

         }

       }

       m_pheap[i] = temp;

    }

     

    template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(n){

       m_pheap = new Type[m_nMaxSize];

       for(int i=0; i<n; i++){

         m_pheap[i] = heap[i];

       }

       m_ncurrentsize = n;

       int pos=(n-2)/2;  //Find the last tree which has more than one element;

       while(pos>=0){

         Adjust(pos, n-1);

         pos--;

       }

    }

     

    template<typename Type> bool MinHeap<Type>::DeleteMin(Type &first){

        first = m_pheap[0];

        m_pheap[0] = m_pheap[m_ncurrentsize-1];

        m_ncurrentsize--;

        Adjust(0, m_ncurrentsize-1);

        return 1;

    }

     

    template<typename Type> bool MinHeap<Type>::Insert(const Type item){

       if(m_ncurrentsize == m_nMaxSize){

         cerr<<"Heap Full!"<<endl;

         return 0;

       }

       m_pheap[m_ncurrentsize] = item;

       int j = m_ncurrentsize, i = (j-1)/2;

       Type temp = m_pheap[j];

       while(j > 0){

         if(m_pheap[i] <= temp){

            break;

         }

         else{

            m_pheap[j] = m_pheap[i];

            j = i;

            i = (j-1)/2;

         }

       }

       m_pheap[j] = temp;

       m_ncurrentsize++;

       return 1;

    }

     

    Edge.h

    template<typename DistType> struct Edge{

    public:

        Edge(int dest, DistType cost): m_ndest(dest), m_cost(cost), m_pnext(NULL){}

     

    public:

        int m_ndest;

        DistType m_cost;

        Edge<DistType> *m_pnext;

     

    };

     

    Vertex.h

    #include "Edge.h"

     

    template<typename NameType, typename DistType> struct Vertex{

    public:

        Vertex(): adj(NULL){}

        NameType m_data;

        Edge<DistType> *adj;

        ~Vertex();

    };

     

    template<typename NameType, typename DistType> Vertex<NameType, DistType>::~Vertex(){

        Edge<DistType> *pmove = adj;

        while (pmove){

            adj = pmove->m_pnext;

            delete pmove;

            pmove = adj;

        }

    }

     

    Graph.h

    #include "Vertex.h"

     

    template<typename NameType, typename DistType> class Graph{

    public:

        Graph(int size = m_nDefaultSize);   //create the Graph with the most vertex of size

        ~Graph();

        bool GraphEmpty() const{    //Is empty?

            return 0 == m_nnumvertex;

        }

        bool GraphFull() const{     //Is full?

            return m_nMaxNum == m_nnumvertex;

        }

        int NumberOfVertex() const{ //get the number of vertex

            return m_nnumvertex;

        }

        int NumberOfEdge() const{   //get the number of edge

            return m_nnumedges;

        }

        NameType GetValue(int v);   //get the value of the vth vertex

        DistType GetWeight(int v1, int v2); //get the weight between v1 and v2

        int GetFirst(int v);        //get the first neighbor vertex of v

        int GetNext(int v1, int v2);//get the next neighbor vertex of v1 behind v2

        bool InsertVertex(const NameType vertex);   //insert vertex with the name of vertex

        bool Removevertex(int v);   //remove the vth vertex

     

        //insert the edge between v1 and v2

        bool InsertEdge(int v1, int v2, DistType weight=m_Infinity);   

     

        bool RemoveEdge(int v1, int v2);    //delete the edge between v1 and v2

        void Print();   //print the graph

     

        Edge<DistType> *GetMin(int v, int *visited);    //get the min weight of the neighbor vertex of v

        void Prim(Graph<NameType, DistType> &graph);    //get the minimize span tree

        void DFS(int v, int *visited);      //depth first search

        void DFS();

        void Dijkstra(int v, DistType *shotestpath);    //get the min weight from v to other vertex

       

    private:

        Vertex<NameType, DistType> *m_pnodetable;   //neighbor list

        int m_nnumvertex;

        const int m_nMaxNum;

        static const int m_nDefaultSize = 10;       //the default maximize vertex

        static const DistType m_Infinity = 100000;  //there is no edge

        int m_nnumedges;

        int Getvertexpos(const NameType vertex);    //get the vertex's position with the name of vertex

    };

     

     

    template<typename NameType, typename DistType> Graph<NameType, DistType>::Graph(int size)

            : m_nnumvertex(0), m_nMaxNum(size), m_nnumedges(0){

        m_pnodetable = new Vertex<NameType, DistType>[size];   

    }

     

    template<typename NameType, typename DistType> Graph<NameType, DistType>::~Graph(){

        Edge<DistType> *pmove;

        for (int i=0; i<this->m_nnumvertex; i++){

            pmove = this->m_pnodetable[i].adj;

            if (pmove){

                this->m_pnodetable[i].adj = pmove->m_pnext;

                delete pmove;

                pmove = this->m_pnodetable[i].adj;

            }

        }

        delete[] m_pnodetable;

    }

     

    template<typename NameType, typename DistType> int Graph<NameType, DistType>::GetFirst(int v){

        if (v<0 || v>=this->m_nnumvertex){

            return -1;

        }

        Edge<DistType> *ptemp = this->m_pnodetable[v].adj;

        return m_pnodetable[v].adj ? m_pnodetable[v].adj->m_ndest : -1;

    }

     

    template<typename NameType, typename DistType> int Graph<NameType, DistType>::GetNext(int v1, int v2){

        if (-1 != v1){

            Edge<DistType> *pmove = this->m_pnodetable[v1].adj;

            while (NULL != pmove->m_pnext){

                if (pmove->m_ndest==v2){

                    return pmove->m_pnext->m_ndest;

                }

                pmove = pmove->m_pnext;

            }       

        }

        return -1;

    }

     

    template<typename NameType, typename DistType> NameType Graph<NameType, DistType>::GetValue(int v){

        if (v<0 || v>=this->m_nnumvertex){

            cerr << "The vertex is not exsit" <<endl;

            exit(1);

        }

        return m_pnodetable[v].m_data;

     

    }

     

    template<typename NameType, typename DistType> int Graph<NameType, DistType>::Getvertexpos(const NameType vertex){

        for (int i=0; i<this->m_nnumvertex; i++){

            if (vertex == m_pnodetable[i].m_data){

                return i;

            }

        }

        return -1;

    }

     

    template<typename NameType, typename DistType> DistType Graph<NameType, DistType>::GetWeight(int v1, int v2){

        if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){

            if (v1 == v2){

                return 0;

            }

            Edge<DistType> *pmove = m_pnodetable[v1].adj;

            while (pmove){

                if (pmove->m_ndest == v2){

                    return pmove->m_cost;

                }

                pmove = pmove->m_pnext;

            }

        }

        return m_Infinity;

    }

     

    template<typename NameType, typename DistType> bool Graph<NameType, DistType>::InsertEdge(int v1, int v2, DistType weight){

        if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){

            Edge<DistType> *pmove = m_pnodetable[v1].adj;

            if (NULL == pmove){ //the first neighbor

                m_pnodetable[v1].adj = new Edge<DistType>(v2, weight);

                return 1;

            }

            while (pmove->m_pnext){

                if (pmove->m_ndest == v2){

                    break;

                }

                pmove = pmove->m_pnext;

            }

            if (pmove->m_ndest == v2){  //if the edge is exist, change the weight

                pmove->m_cost = weight;

                return 1;

            }

            else{

                pmove->m_pnext = new Edge<DistType>(v2, weight);

                return 1;

            }

        }

        return 0;

    }

    template<typename NameType, typename DistType> bool Graph<NameType, DistType>::InsertVertex(const NameType vertex){

        int i = this->Getvertexpos(vertex);

        if (-1 != i){

            this->m_pnodetable[i].m_data = vertex;

        }

        else{

            if (!this->GraphFull()){

                this->m_pnodetable[this->m_nnumvertex].m_data = vertex;

                this->m_nnumvertex++;

            }

            else{

                cerr << "The Graph is Full" <<endl;

                return 0;

            }

        }

        return 1;

    }

    template<typename NameType, typename DistType> bool Graph<NameType, DistType>::RemoveEdge(int v1, int v2){

        if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){

            Edge<DistType> *pmove = this->m_pnodetable[v1].adj, *pdel;

            if (NULL == pmove){

                cerr << "the edge is not exist!" <<endl;

                return 0;

            }

            if (pmove->m_ndest == v2){  //the first neighbor

                this->m_pnodetable[v1].adj = pmove->m_pnext;

                delete pmove;

                return 1;

            }

            while (pmove->m_pnext){

                if (pmove->m_pnext->m_ndest == v2){

                    pdel = pmove->m_pnext;

                    pmove->m_pnext = pdel->m_pnext;

                    delete pdel;

                    return 1;

                }

                pmove = pmove->m_pnext;

            }

        }

        cerr << "the edge is not exist!" <<endl;

        return 0;

    }

    template<typename NameType, typename DistType> bool Graph<NameType, DistType>::Removevertex(int v){

        if (v<0 || v>=this->m_nnumvertex){

            cerr << "the vertex is not exist!" << endl;

            return 0;

        }

        Edge<DistType> *pmove, *pdel;

        for (int i=0; i<this->m_nnumvertex; i++){

            pmove = this->m_pnodetable[i].adj;

            if (i != v){    //delete the edge point to v

                if (NULL == pmove){

                    continue;

                }

                if (pmove->m_ndest == v){

                    this->m_pnodetable[i].adj = pmove->m_pnext;

                    delete pmove;

                    continue;

                }

                else {

                    if (pmove->m_ndest > v){    //the vertex more than v subtract 1

                        pmove->m_ndest--;

                    }

                }

                while (pmove->m_pnext){

                    if (pmove->m_pnext->m_ndest == v){

                        pdel = pmove->m_pnext;

                        pmove->m_pnext = pdel->m_pnext;

                        delete pdel;

                    }

                    else {

                        if (pmove->m_pnext->m_ndest > v){

                            pmove->m_pnext->m_ndest--;

                            pmove = pmove->m_pnext;

                        }

                    }

                }

            }

            else {      //delete the edge point from v

                while (pmove){

                    this->m_pnodetable[i].adj = pmove->m_pnext;

                    delete pmove;

                    pmove = this->m_pnodetable[i].adj;

                }

            }

        }

        this->m_nnumvertex--;

        for (int i=v; i<this->m_nnumvertex; i++)    //delete the vertex

        {

            this->m_pnodetable[i].adj = this->m_pnodetable[i+1].adj;

            this->m_pnodetable[i].m_data = this->m_pnodetable[i+1].m_data;

        }

        this->m_pnodetable[this->m_nnumvertex].adj = NULL;

        return 1;

    }

     

    template<typename NameType, typename DistType> void Graph<NameType, DistType>::Print(){

        Edge<DistType> *pmove;

        for (int i=0; i<this->m_nnumvertex; i++){

            cout << this->m_pnodetable[i].m_data << "--->";

            pmove = this->m_pnodetable[i].adj;

            while (pmove){

                cout << pmove->m_cost << "--->" << this->m_pnodetable[pmove->m_ndest].m_data << "--->";

                pmove = pmove->m_pnext;

            }

            cout << "NULL" << endl;

        }

    }

     

    template<typename NameType, typename DistType> void Graph<NameType, DistType>::Prim(Graph<NameType, DistType> &graph){

        int *node = new int[this->m_nnumvertex];    //using for store the vertex visited

        int *visited = new int[this->m_nnumvertex];

        int count = 0;

        Edge<DistType> *ptemp, *ptemp2 = new Edge<DistType>(0, this->m_Infinity), *pmin;

        int min;

        for (int i=0; i<this->m_nnumvertex; i++){

            graph.InsertVertex(this->m_pnodetable[i].m_data);

            node[i] = 0;

            visited[i] = 0;

        }

        visited[0] = 1;

        while(++count < this->m_nnumvertex){

            pmin = ptemp2;

            pmin->m_cost = this->m_Infinity;

     

            //get the minimize weight between the vertex visited and the  vertex which is not visited

            for (int i=0; i<count; i++){

                ptemp = GetMin(node[i], visited);

                if (NULL == ptemp){

                    continue;

                }

                if (pmin->m_cost > ptemp->m_cost){

                    pmin = ptemp;

                    min = node[i];           

                }

            }

     

            node[count] = pmin->m_ndest;

            visited[node[count]] = 1;

            graph.InsertEdge(pmin->m_ndest, min, pmin->m_cost);

            graph.InsertEdge(min, pmin->m_ndest, pmin->m_cost);

        }

        graph.DFS();

        delete ptemp2;

        delete[] node;

        delete[] visited;

    }

     

    template<typename NameType, typename DistType> void Graph<NameType, DistType>::DFS(int v, int *visited){

        cout << "--->" << this->GetValue(v);

        visited[v] = 1;

        int weight = this->GetFirst(v);

        while (-1 != weight){

            if (!visited[weight]){

                cout << "--->" << this->GetWeight(v, weight);

                DFS(weight, visited);

            }

            weight = this->GetNext(v, weight);

        }

    }

     

    template<typename NameType, typename DistType> void Graph<NameType, DistType>::DFS(){

        int *visited = new int[this->m_nnumvertex];

        for (int i=0; i<this->m_nnumvertex; i++){

            visited[i] = 0;

        }

        cout << "head";

        DFS(0, visited);

        cout << "--->end";

    }

     

    template<typename NameType, typename DistType> Edge<DistType>* Graph<NameType, DistType>::GetMin(int v, int *visited){

        Edge<DistType> *pmove = this->m_pnodetable[v].adj, *ptemp = new Edge<DistType>(0, this->m_Infinity), *pmin = ptemp;

        while (pmove){

            if (!visited[pmove->m_ndest] && pmin->m_cost>pmove->m_cost){

                pmin = pmove;

            }

            pmove = pmove->m_pnext;

        }

        if (pmin == ptemp){

            delete ptemp;

            return NULL;

        }

        delete ptemp;

        return pmin;

    }

    template<typename NameType, typename DistType> void Graph<NameType, DistType>::Dijkstra(int v, DistType *shotestpath){

        int *visited = new int[this->m_nnumvertex];

        int *node = new int[this->m_nnumvertex];

        for (int i=0; i<this->m_nnumvertex; i++){

            visited[i] = 0;

            node[i] = 0;

            shotestpath[i] = this->GetWeight(v, i);

        }

        visited[v] = 1;

        for (int i=1; i<this->m_nnumvertex; i++){

            DistType min = this->m_Infinity;

            int u=v;

     

            for (int j=0; j<this->m_nnumvertex; j++){   //get the minimize weight

                if (!visited[j] && shotestpath[j]<min){

                    min = shotestpath[j];

                    u = j;

                }

            }

     

            visited[u] = 1;

            for (int w=0; w<this->m_nnumvertex; w++){   //change the weight from v to other vertex

                DistType weight = this->GetWeight(u, w);

                if (!visited[w] && weight!=this->m_Infinity

                        && shotestpath[u]+weight<shotestpath[w]){

                    shotestpath[w] = shotestpath[u] + weight;

                }

            }

        }

        delete[] visited;

        delete[] node;

    }

     

    test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "Graph.h"

     

    int main(){

        Graph<char *, int> graph,graph2;

        int shotestpath[7];

        char *vertex[] = {"地大", "武大", "华科", "交大", "北大", "清华", "复旦"};

        int edge[][3] = {{0, 1, 43}, {0, 2, 12}, {1, 2, 38}, {2, 3 ,1325}

                            ,{3, 6, 55}, {4, 5, 34}, {4, 6, 248}};   

        for (int i=0; i<7; i++){

            graph.InsertVertex(vertex[i]);

        }

        graph.Print();

        cout << endl << endl <<endl;

        for (int i=0; i<7; i++){

            graph.InsertEdge(edge[i][0], edge[i][1], edge[i][2]);

            graph.InsertEdge(edge[i][1], edge[i][0], edge[i][2]);

        }

        graph.Print();

        cout << endl << endl <<endl;

        graph.Dijkstra(0, shotestpath);

        for (int i=0; i<7; i++){

            cout << graph.GetValue(0) << "--->" << graph.GetValue(i)

                    << ":   " << shotestpath[i] <<endl;

        }

       

        cout << endl << endl <<endl;

        graph.Prim(graph2);

        cout << endl << endl <<endl;

        graph.Removevertex(2);

        graph.Print();

        return 0;

     

    }

    18、排序

    Data.h

    template<typename Type> class Element{

    public:

        Type GetKey(){

            return key;

        }

     

        void SetKey(Type item){

            key = item;

        }

     

    public:

        Element<Type>& operator =(Element<Type> copy){

            key = copy.key;

            return *this;

        }

       

        bool operator ==(Element<Type> item){

            return this->key == item.key;

        }

       

        bool operator !=(Element<Type> item){

            return this->key != item.key;

        }

     

        bool operator <(Element<Type> item){

            return this->key < item.key;

        }

       

        bool operator >(Element<Type> item){

            return this->key > item.key;

        }

     

        bool operator >=(Element<Type> item){

            return this->key >= item.key;

        }

     

        bool operator <=(Element<Type> item){

            return this->key <= item.key;

        }

     

           

    private:

        Type key;

    };

     

    template<typename Type> class Sort;

    template<typename Type> class DataList{

    public:

        friend class Sort<Type>;

        DataList(int size=m_nDefaultSize): m_nMaxSize(size), m_ncurrentsize(0){

            m_pvector = new Element<Type>[size];

        }

     

        DataList(Type *data, int size);

       

        bool Insert(Type item);

        ~DataList(){

            delete[] m_pvector;

        }

     

        int Size(){

            return this->m_ncurrentsize;

        }

        void Swap(Element<Type> &left, Element<Type> &right){

            Element<Type> temp = left;

            left = right;

            right = temp;

        }

       

        void Print();

    private:

        static const int m_nDefaultSize = 10;

        Element<Type> *m_pvector;

        const int m_nMaxSize;

        int m_ncurrentsize;

    };

     

    template<typename Type> DataList<Type>::DataList(Type *data, int size)

            : m_nMaxSize(size > m_nDefaultSize ? size : m_nDefaultSize), m_ncurrentsize(0){

        this->m_pvector = new Element<Type>[size];

        for (int i=0; i<size; i++){

            this->m_pvector[i].SetKey(data[i]);

        }

        this->m_ncurrentsize += size;

     

    }

     

    template<typename Type> bool DataList<Type>::Insert(Type item){

        if (this->m_ncurrentsize == this->m_nMaxSize){

            cerr << "The list is full!" <<endl;

            return 0;

        }

        this->m_pvector[this->m_ncurrentsize++].SetKey(item);

    }

     

    template<typename Type> void DataList<Type>::Print(){

        cout << "The list is:";

        for (int i=0; i<this->m_ncurrentsize; i++){

            cout << " " << this->m_pvector[i].GetKey();

        }

    }

     

    QueueNode.h

    #include "QueueNode.h"

     

    template<typename Type> class LinkQueue{

    public:

       LinkQueue():m_prear(NULL),m_pfront(NULL){}

       ~LinkQueue(){

         MakeEmpty();

       }

       void Append(const Type item);

       Type Delete();

       Type GetFront();

       void MakeEmpty();

       bool IsEmpty() const{

         return m_pfront==NULL;

       }

       void Print();

     

    private:

       QueueNode<Type> *m_prear,*m_pfront;

    };

     

    template<typename Type> void LinkQueue<Type>::MakeEmpty(){

       QueueNode<Type> *pdel;

       while(m_pfront){

         pdel=m_pfront;

         m_pfront=m_pfront->m_pnext;

         delete pdel;

       }

    }

     

    template<typename Type> void LinkQueue<Type>::Append(const Type item){

       if(m_pfront==NULL){

         m_pfront=m_prear=new QueueNode<Type>(item);

       }

       else{

         m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

       }

    }

     

    template<typename Type> Type LinkQueue<Type>::Delete(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       QueueNode<Type> *pdel=m_pfront;

       Type temp=m_pfront->m_data;

       m_pfront=m_pfront->m_pnext;

       delete pdel;

       return temp;

    }

     

    template<typename Type> Type LinkQueue<Type>::GetFront(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       return m_pfront->m_data;

    }

     

    template<typename Type> void LinkQueue<Type>::Print(){

       QueueNode<Type> *pmove=m_pfront;

       cout<<"front";

       while(pmove){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->rear"<<endl<<endl<<endl;

    }

     

    LinkQueue.h

    #include "QueueNode.h"

     

    template<typename Type> class LinkQueue{

    public:

       LinkQueue():m_prear(NULL),m_pfront(NULL){}

       ~LinkQueue(){

         MakeEmpty();

       }

       void Append(const Type item);

       Type Delete();

       Type GetFront();

       void MakeEmpty();

       bool IsEmpty() const{

         return m_pfront==NULL;

       }

       void Print();

     

    private:

       QueueNode<Type> *m_prear,*m_pfront;

    };

     

    template<typename Type> void LinkQueue<Type>::MakeEmpty(){

       QueueNode<Type> *pdel;

       while(m_pfront){

         pdel=m_pfront;

         m_pfront=m_pfront->m_pnext;

         delete pdel;

       }

    }

     

    template<typename Type> void LinkQueue<Type>::Append(const Type item){

       if(m_pfront==NULL){

         m_pfront=m_prear=new QueueNode<Type>(item);

       }

       else{

         m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

       }

    }

     

    template<typename Type> Type LinkQueue<Type>::Delete(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       QueueNode<Type> *pdel=m_pfront;

       Type temp=m_pfront->m_data;

       m_pfront=m_pfront->m_pnext;

       delete pdel;

       return temp;

    }

     

    template<typename Type> Type LinkQueue<Type>::GetFront(){

       if(IsEmpty()){

         cout<<"There is no element!"<<endl;

         exit(1);

       }

       return m_pfront->m_data;

    }

     

    template<typename Type> void LinkQueue<Type>::Print(){

       QueueNode<Type> *pmove=m_pfront;

       cout<<"front";

       while(pmove){

         cout<<"--->"<<pmove->m_data;

         pmove=pmove->m_pnext;

       }

       cout<<"--->rear"<<endl<<endl<<endl;

    }

     

    Sort.h

    #include "Data.h"

    #include "LinkQueue.h"

     

    template<typename Type> class Sort{

    public:

        void InsertSort(DataList<Type> &list, int n=-1);

        void BinaryInsertSort(DataList<Type> &list, int n=-1);

        void ShellSort(DataList<Type> &list, const int gap=-1);

        void BubbleSort(DataList<Type> &list);

        void QuickSort(DataList<Type> &list, int left=0, int right=-3);

        void SelectSort(DataList<Type> &list);

        void HeapSort(DataList<Type> &list);

        void MergeSort(DataList<Type> &list);

        void RadixSort(DataList<int> &list, int m, int d);      //just use for integer!

     

     

    private:

        void BubbleSwap(DataList<Type> &list, const int n, int &flag);

        void SelectChange(DataList<Type> &list, const int n);

        void HeapAdjust(DataList<Type> &list, const int start, const int end);

        void Merge(DataList<Type> &list, DataList<Type> &mergedlist, const int len);

        void MergeDouble(DataList<Type> &list, DataList<Type> &mergedlist, const int start, const int part, const int end);

    };

     

    template<typename Type> void Sort<Type>::InsertSort(DataList<Type> &list, int n){

        if (-1 == n){

            for (int i=1; i<list.m_ncurrentsize; i++){

                InsertSort(list, i);

            }

            return;

        }

        Element<Type> temp = list.m_pvector[n];

        int i;

        for (i=n; i>0; i--){

            if (temp > list.m_pvector[i-1]){

     

                break;

            }

            else{

                list.m_pvector[i] = list.m_pvector[i-1];

            }

        }

        list.m_pvector[i] = temp;

    }

     

    template<typename Type> void Sort<Type>::BinaryInsertSort(DataList<Type> &list, int n){

        if (-1 == n){

            for (int i=1; i<list.m_ncurrentsize; i++){

                BinaryInsertSort(list, i);

            }

            return;

        }

        Element<Type> temp = list.m_pvector[n];

        int left = 0, right = n-1;

        while(left <= right){

            int middle = (left + right) / 2;

            if (temp < list.m_pvector[middle]){

                right = middle - 1;

            }

            else {

                left = middle + 1;

            }

        }

        for (int i=n-1; i>=left; i--){

            list.m_pvector[i+1] = list.m_pvector[i];

        }

        list.m_pvector[left] = temp;

    }

     

    template<typename Type> void Sort<Type>::ShellSort(DataList<Type> &list, const int gap){

        if (-1 == gap){

            int gap = list.m_ncurrentsize / 2;

            while (gap){

                ShellSort(list, gap);

                gap = (int)(gap / 2);

            }

            return;

        }

        for (int i=gap; i<list.m_ncurrentsize; i++){

            InsertSort(list, i);

        }

    }

     

    template<typename Type> void Sort<Type>::BubbleSwap(DataList<Type> &list, const int n, int &flag){

        flag = 0;

        for (int i=list.m_ncurrentsize-1; i>=n; i--){

            if (list.m_pvector[i-1] > list.m_pvector[i]){

                list.Swap(list.m_pvector[i-1], list.m_pvector[i]);

                flag = 1;

            }

        }

    }

     

    template<typename Type> void Sort<Type>::BubbleSort(DataList<Type> &list){

        int flag = 1, n = 0;

        while (++n<list.m_ncurrentsize && flag){

            BubbleSwap(list, n, flag);       

        }

    }

     

    template<typename Type> void Sort<Type>::QuickSort(DataList<Type> &list, int left=0, int right=-1){

        if (-3 == right){

            right = list.m_ncurrentsize - 1;

        }

        if (left < right){

            int pivotpos = left;

            Element<Type> pivot = list.m_pvector[left];

            for (int i=left+1; i<=right; i++){

                if (list.m_pvector[i]<pivot && ++pivotpos!=i){

                    list.Swap(list.m_pvector[pivotpos], list.m_pvector[i]);

                }

                list.Swap(list.m_pvector[left], list.m_pvector[pivotpos]);

            }

            QuickSort(list, left, pivotpos-1);

            QuickSort(list, pivotpos+1, right);

        }

     

    }

     

    template<typename Type> void Sort<Type>::SelectChange(DataList<Type> &list, const int n){

        int j = n;

        for (int i=n+1; i<list.m_ncurrentsize; i++){

            if (list.m_pvector[i] < list.m_pvector[j]){

                j = i;

            }

        }

        if (j != n){

            list.Swap(list.m_pvector[n], list.m_pvector[j]);

        }

    }

     

    template<typename Type> void Sort<Type>::SelectSort(DataList<Type> &list){

        for (int i=0; i<list.m_ncurrentsize-1; i++){

            SelectChange(list, i);

        }

    }

     

    template<typename Type> void Sort<Type>::HeapAdjust(DataList<Type> &list, const int start, const int end){

        int current = start, child = 2 * current + 1;

        Element<Type> temp = list.m_pvector[start];

        while (child <= end){

            if (child<end && list.m_pvector[child]<list.m_pvector[child+1]){

                child++;

            }

            if (temp >= list.m_pvector[child]){

                break;

            }

            else {

                list.m_pvector[current] = list.m_pvector[child];

                current = child;

                child = 2 * current + 1;

            }

        }

        list.m_pvector[current] = temp;

    }

     

    template<typename Type> void Sort<Type>::HeapSort(DataList<Type> &list){

        for (int i=(list.m_ncurrentsize-2)/2; i>=0; i--){

            HeapAdjust(list, i, list.m_ncurrentsize-1);

        }

     

        for (int i=list.m_ncurrentsize-1; i>=1; i--){

            list.Swap(list.m_pvector[0], list.m_pvector[i]);

            HeapAdjust(list, 0, i-1);

        }

    }

     

    template<typename Type> void Sort<Type>::MergeDouble(DataList<Type> &list, DataList<Type> &mergedlist, const int start, const int part, const int end){

        int i = start, j = part + 1, k = start;

        while (i<=part && j<=end){

            if (list.m_pvector[i] <= list.m_pvector[j]){

                mergedlist.m_pvector[k++] = list.m_pvector[i++];

            }

            else {

                mergedlist.m_pvector[k++] = list.m_pvector[j++];

            }

        }

        if (i <= part){

            for (int m=i; m<=part && k<=end;){

                mergedlist.m_pvector[k++] = list.m_pvector[m++];

            }

        }

        else {

            for (int m=j; m<=end && k<=end; m++){

                mergedlist.m_pvector[k++] = list.m_pvector[m];

            }

        }

    }

    template<typename Type> void Sort<Type>::Merge(DataList<Type> &list, DataList<Type> &mergedlist, const int len){

        int n = 0;

        while (n+2*len < list.m_ncurrentsize){

            MergeDouble(list, mergedlist, n, n+len-1, n+2*len-1);

            n += 2*len;

        }

        if (n+len < list.m_ncurrentsize){

            MergeDouble(list, mergedlist, n, n+len-1, list.m_ncurrentsize-1);

        }

        else {

            for (int i=n; i<list.m_ncurrentsize; i++){

                mergedlist.m_pvector[i] = list.m_pvector[i];

            }

        }

    }

     

    template<typename Type> void Sort<Type>::MergeSort(DataList<Type> &list){

        DataList<Type> temp(list.m_nMaxSize);

        temp.m_ncurrentsize = list.m_ncurrentsize;

        int len = 1;

        while (len < list.m_ncurrentsize){

            Merge(list, temp, len);

            len *= 2;

            Merge(temp, list, len);

            len *= 2;

        }

    }

     

    template<typename Type> void Sort<Type>::RadixSort(DataList<int> &list, int m, int d){

        LinkQueue<int> *queue = new LinkQueue<int>[d];

        int power = 1;

        for (int i=0; i<m; i++){

            if (i){

                power = power * d;

            }

            for (int j=0; j<list.m_ncurrentsize; j++){

                int k = (list.m_pvector[j].GetKey() / power) % d;

                queue[k].Append(list.m_pvector[j].GetKey());

            }

     

            for (int j=0,k=0; j<d; j++){

                while (!queue[j].IsEmpty()){

                    list.m_pvector[k++].SetKey(queue[j].Delete());

                }

            }

        }

    }

     

    test.cpp

    #include <iostream>

     

    using namespace std;

     

    #include "Sort.h"

     

    int main(){

        int init[15]={1,3,5,7,4,2,8,0,6,9,29,13,25,11,32};

        DataList<int> data(init, 15);

        Sort<int> sort;

        data.Print();

        cout << endl << endl <<endl;

        sort.InsertSort(data);

        sort.BinaryInsertSort(data);

        sort.ShellSort(data);

        sort.BubbleSort(data);

        sort.QuickSort(data);

        sort.SelectSort(data);

        sort.HeapSort(data);

        sort.MergeSort(data);

        sort.RadixSort(data, 2, 10);

    data.Print();

     

        return 0;

    }

  • 相关阅读:
    CF785E Anton and Permutation
    P4054 [JSOI2009]计数问题
    P4396 [AHOI2013]作业
    AD PCB中各层的含义
    AD21 使用手册 快捷键(二)
    AD 汉化和界面恢复
    AD21 使用手册 快捷键(一)
    TINA-TI 安装
    B站下载 视频
    restful-work基本组件
  • 原文地址:https://www.cnblogs.com/shenchao/p/3824825.html
Copyright © 2011-2022 走看看