zoukankan      html  css  js  c++  java
  • Uva 11538 Chess Queen (数学规律题)

    Problem A
    Chess Queen 
    Input: Standard Input

    Output: Standard Output

    You probably know how the game of chess is played and how chess queen operates. Two chess queens are in attacking position when they are on same row, column or diagonal of a chess board. Suppose two such chess queens (one black and the other white) are placed on (2x2) chess board. They can be in attacking positions in 12 ways, these are shown in the picture below:


    Figure: in a (2x2) chessboard 2 queens can be in
    attacking position in 12 ways

    Given an (NxM) board you will have to decide in how many ways 2 queens can be in attacking position in that.

    Input

    Input file can contain up to 5000 lines of inputs. Each line contains two non-negative integers which denote the value of M and N (0< M, N106) respectively.

    Input is terminated by a line containing two zeroes. These two zeroes need not be processed.

    Output

    For each line of input produce one line of output. This line contains an integer which denotes in how many ways two queens can be in attacking position in an (MxN) board, where the values of M and N came from the input. All output values will fit in 64-bit signed integer.

    Sample Input Output for Sample Input

    2 2

    100 223

    2300 1000

    0 0

    12

    10907100

    11514134000

     
     
     
     
     
     
     
    解题思路:找规律
     
    解题代码:
     1 // File Name: UVA11538.cpp
     2 // Author: sheng
     3 // Created Time: 2013年05月14日 星期二 13时24分11秒
     4 
     5 #include <stdio.h>
     6 #include <math.h>
     7 typedef long long LL;
     8 
     9 int main()
    10 {
    11     LL n, m;
    12     LL ans, temps;
    13     while (scanf ("%lld%lld", &n, &m) == 2 && (n || m))
    14     {
    15         if (n > m)  //保证n是最小的
    16         {
    17             n ^= m;
    18             m ^= n;
    19             n ^= m;
    20         }
    21         ans = n * (n-1) * m + m * (m-1) * n; //统计同行同列的情况
    22         temps = 0;
    23         for (LL i = 2; i < n; i ++) //对角线最多有n个格子,线统计2->n-1个格子的情况
    24         {
    25             temps += i * (i-1);
    26         }
    27         temps *= 4;
    28         for (LL i = 0; i < 2 * (m - n + 1); i ++) //这里统计斜边n个格子的情况,最多有(m-n+1)条n个格子的斜边,由于有正有反,所以要乘以一个2;
    29         {
    30             temps += n * (n-1);
    31         }
    32         ans += temps; //统计结果
    33         printf ("%lld\n", ans);
    34     }
    35     return 0;
    36 }
    View Code G++

    一个大牛的代码://我不知道ta的公式是怎么来的,求解释

     1 //11538 Chess Queen Accepted    C++ 0.024   2013-04-22 08:15:00  
     2 #include <iostream>  
     3 #include <algorithm>  
     4 #include <cstdio>  
     5 using namespace std;  
     6   
     7 int main()  
     8 {  
     9     unsigned long long n, m;  
    10     while(cin >> n >> m)  {  
    11         if(!m&&!n) break;  
    12         if(n>m) swap(n, m);  
    13         long long res = n*m*(m+n-2)+2*n*(n-1)*(3*m-n-1)/3 ;  
    14         cout << res << endl;  
    15     }  
    16     return 0;  
    17 }
    View Code
  • 相关阅读:
    nginx公网IP无法访问浏览器
    Internet接入方式
    Adobe Photoshop Lightroom 5.3和序列号
    getopt
    printf
    scanf
    cycling -avoid the vicious cycle
    ACE handle_timeout 事件重入
    Linux查看程序端口占用
    The GNU C Library
  • 原文地址:https://www.cnblogs.com/shengshouzhaixing/p/3077701.html
Copyright © 2011-2022 走看看