zoukankan      html  css  js  c++  java
  • Hadoop| MapReduce01 概述

     概述

    分布式运算程序;

    优点:易于编程;良好扩展性;高容错性;适合PB级以上海量数据的离线处理;

    缺点:不擅长实时计算;不擅长流式计算;不擅长DAG有向图计算;

    核心思想:

    1)分布式的运算程序往往需要分成至少2个阶段。

    2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

    3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

    4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

    一个完整的MapReduce在分布式运行时有3类实例进程:

    MrAppMaster:负责整个程序的过程调度及状态协调;

    MapTask:负责Map阶段的整个数据处理流程;

    ReduceTask:负责ReduceTask阶段的整个数据处理流程;

    数据序列化类型

    常用的数据类型对应的Hadoop数据序列化类型
    Java类型       Hadoop Writable类型
    Boolean       BooleanWritable
    Byte            ByteWritable
    Int             IntWritable
    Float           FloatWritable
    Long            LongWritable
    Double        DoubleWritable
    String        Text
    Map             MapWritable
    Array        ArrayWritable
    Null           NullWritable

    MapReduce编程规范:

    用户编写的程序分成三个部分:Mapper、Reducer和Driver。

    Mapper阶段:

    自定义的Mapper继承父类;输入数据以K,V对的形式;业务逻辑写在map( )方法;

    输出数据以K,V形式;map()方法(MapTask进程)对每一个k,v调用一次

    Reduce阶段:

    自定义的Reducer继承父类;输入数据类型对应Mapper的输出类型以K,V对的形式;业务逻辑写在reduce( )方法;

    输出数据以K,V形式;(ReduceTask进程)对每一组相同k的k,v调用一次reduce方法

    Driver 阶段:

    Driver 相当于yarn集群的客户端,提交(封装了MapReduce程序相关运行参数的job对象)整个程序到yarn集群

    Word Count案例 -- 创建Maven工程

    在pom.xml文件中添加如下依赖

    <dependencies>
            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>RELEASE</version>
            </dependency>
            <dependency>
                <groupId>org.apache.logging.log4j</groupId>
                <artifactId>log4j-core</artifactId>
                <version>2.8.2</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>2.7.2</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>2.7.2</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-hdfs</artifactId>
                <version>2.7.2</version>
            </dependency>
    </dependencies>
    View Code

    在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

    log4j.rootLogger=INFO, stdout
    log4j.appender.stdout=org.apache.log4j.ConsoleAppender
    log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
    log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
    log4j.appender.logfile=org.apache.log4j.FileAppender
    log4j.appender.logfile.File=target/spring.log
    log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
    log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
    View Code

    编写Mapper类

    package com.xxx.mapreduce.wordcount;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    import java.io.IOException;
    
    public class WcMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        //定义泛型: 输入是以行号: 一行文本这种形式;  输出是以aaa: 1这种形式
        private Text word = new Text();  //对象定义为类的私有,是为了防止垃圾,对象太多会占用很大的JVM堆空间;
        private IntWritable one = new IntWritable(1);
    
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //1.切分行数据
            String[] split = value.toString().split(" ");
            for (String str : split) {
                this.word.set(str);
                //context贯彻整个页面的,
                context.write(this.word, one);
            }
    
        }
    }

    WcReduce类

    package com.xxx.mapreduce.wordcount;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    import java.io.IOException;
    import java.util.Iterator;
    
    public class WcReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
        //泛型 输入aaa  1; 输出是对所有的进行统计汇总aaa 3;
        private IntWritable sumAll = new IntWritable();
    
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            Iterator<IntWritable> iterator = values.iterator();
            while (iterator.hasNext()){
                sum += iterator.next().get();
            }
            this.sumAll.set(sum);
            context.write(key, this.sumAll);
        }
    }

    WcDriver

    package com.atguigu.mapreduce.wordcount;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    
    public class WcDriver  {
    
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            //1.获取一个任务实例; 获取配置信息和封装任务
            Job job = Job.getInstance(new Configuration());
            //2.设置jar类加载路径
            job.setJarByClass(WcDriver.class);
            //3.设置Mapper和Reduce类
            job.setMapperClass(WcMapper.class);
            job.setReducerClass(WcReduce.class);
            //4.设置Mapper和Reduce最终输出的k  v类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
    
            //5.设置输入和输出路径
            FileInputFormat.setInputPaths(job,new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            //6.提交任务
            boolean b = job.waitForCompletion(true);
            System.exit(b ? 0 : 1);
        }
    }

    打包jar,copy到Hadoop集群上传,然后在集群中运行

    [kris@hadoop101 hadoop-2.7.2]$ rz -E    //上传jar包WordCount-1.0-SNAPSHOT.jar
    
    [kris@hadoop101 hadoop-2.7.2]$ hadoop jar WordCount-1.0-SNAPSHOT.jar com.atguigu.mapreduce.wordcount.WcDriver /2.txt /output            //运行

    Hadoop序列化

     注意:

    反序列化时,需要反射调用空参构造函数,所以必须有空参构造

    注意反序列化的顺序和序列化的顺序完全一致

    要想把结果显示在文件中,需要重写toString(),可用” ”分开,方便后续用。

    如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口(WritableComparable< >),因为MapReduce框中的Shuffle过程要求对key必须能排序。

    @Override

    public int compareTo(FlowBean o) {

        // 倒序排列,从大到小

        return xxx ;

    }

    自定义bean对象实现序列化接口(Writable)

    package flow;
    
    import org.apache.hadoop.io.Writable;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    //1.实现Writable接口
    public class FlowBean implements Writable {
        private long upFlow;
        private long downFlow;
        private long sumFlow;
    
        public FlowBean() {
            super();
        }
    
        public void set(long upFlow, long downFlow) {
            this.upFlow = upFlow;
            this.downFlow = downFlow;
            this.sumFlow = this.upFlow + this.downFlow;
        }
    
        public long getUpFlow() {
            return upFlow;
        }
        public void setUpFlow(long upFlow) {
            this.upFlow = upFlow;
        }
    
        public long getDownFlow() {
            return downFlow;
        }
    
        public void setDownFlow(long downFlow) {
            this.downFlow = downFlow;
        }
    
        public long getSumFlow() {
            return sumFlow;
        }
    
        public void setSumFlow(long sumFlow) {
            this.sumFlow = sumFlow;
        }
    
        @Override
        public String toString() {
            return "上行流量=" + upFlow +
                    ",下行流量=" + downFlow +
                    ",总流量=" + sumFlow;
        }
        //写序列化方法;
        public void write(DataOutput dataOutput) throws IOException {
            dataOutput.writeLong(upFlow);
            dataOutput.writeLong(downFlow);
            dataOutput.writeLong(sumFlow);
        }
        //反序列化方法必须和序列化方法顺序一致;
        public void readFields(DataInput dataInput) throws IOException {
            this.upFlow = dataInput.readLong();
            this.downFlow = dataInput.readLong();
            this.sumFlow = dataInput.readLong();
    
        }
    }
    View Code
        //写序列化方法;
        public void write(DataOutput dataOutput) throws IOException {
            dataOutput.writeLong(upFlow);
            dataOutput.writeLong(downFlow);
            dataOutput.writeLong(sumFlow);
        }
        //反序列化方法必须和序列化方法顺序一致;
        public void readFields(DataInput dataInput) throws IOException {
            this.upFlow = dataInput.readLong();
            this.downFlow = dataInput.readLong();
            this.sumFlow = dataInput.readLong();
    FlowMapper类
    //1.泛型是输入:行号+一行的内容; 输出:key字符手机号+类对象
    public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
        private Text phone = new Text();
        FlowBean flowBean = new FlowBean();
    
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] split = value.toString().split("	");
            phone.set(split[1]); //获取手机号key
            flowBean.set(Long.parseLong(split[split.length-3]), Long.parseLong(split[split.length-2]));//获取upFlow和downFlow作为v
            context.write(phone, flowBean);
        }
    }
    
    FlowReducer类
    
    public class FlowReduce extends Reducer<Text, FlowBean, Text, FlowBean> {
       private FlowBean flowBean = new FlowBean();
       @Override
       protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
          super.reduce(key, values, context);
          int sumUpFlow = 0;
          int sumDownFlow = 0;
          for (FlowBean value : values) {
             sumUpFlow += value.getUpFlow();
             sumDownFlow += value.getDownFlow();
          }
          flowBean.set(sumUpFlow, sumDownFlow);
          context.write(key, flowBean);
       }
    }
    
    FlowDriver类
    
    public class FlowDriver {
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            //1.获取job实例;获取配置信息
            Job job = Job.getInstance(new Configuration());
            //2.设置类路径;指定被程序的jar包所在的路径
            job.setJarByClass(FlowDriver.class);
            //3.设置Mapper和Reducer  指定本业务job要使用的mapper/Reducer业务类
            job.setMapperClass(FlowMapper.class);
            job.setReducerClass(FlowReduce.class);
            //4.设置输出类型  指定mapper输出数据的kv类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(FlowBean.class);
    //        指定最终输出的数据的kv类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(FlowBean.class);
            //5.设置输入输出路径
            FileInputFormat.setInputPaths(job, new Path("F:\input"));
            FileOutputFormat.setOutputPath(job, new Path("F:\output"));
            //6.提交
            boolean b = job.waitForCompletion(true);
            System.exit(b ? 0 : 1);
        }
    }
  • 相关阅读:
    Server Tomcat v8.0 Server at localhost failed to start.的解决方法
    使用quartz实现定时器功能
    使用SpringMVC自带的@Scheduled完成定时任务
    springMVC中不通过注解方式获取指定Service的javabean
    java set初始化问题
    一个粗糙的分页
    eclipse下maven springMVC 整合 mybatis
    联合分布(二):联合分布
    联合分布(一):什么是概率分布
    mysql:启动服务时遇到的问题
  • 原文地址:https://www.cnblogs.com/shengyang17/p/10294430.html
Copyright © 2011-2022 走看看