zoukankan      html  css  js  c++  java
  • Flume

    概述

    Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。

    主要作用:实时读取服务器本地磁盘数据,将数据写入HDFS;

    优点:

    1. 可以和任意存储进程集成。
    2. 输入的的数据速率大于写入目的存储的速率(读写速率不同步),flume会进行缓冲,减小hdfs的压力。
    3. flume中的事务基于channel,使用了两个事务模型(sender + receiver),确保消息被可靠发送。

    Flume使用两个独立的事务分别负责从soucrce到channel,以及从channel到sink的事件传递。一旦事务中所有的数据全部成功提交到channel,那么source才认为该数据读取完成。同理,只有成功被sink写出去的数据,才会从channel中移除;失败后就重新提交;

    组成:Agent 由 source+channel+sink构成;

    source是数据来源的抽象,sink是数据去向的抽象;

    Source
    Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据
    数据输入端输入类型:spooling directory(spooldir)文件夹里边的数据不停的滚动、exec 命令的执行结果被采集
    syslog系统日志、avro上一层的flume、netcat网络端传输的数据


    Channel
    Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。
    Flume自带两种ChannelMemory ChannelFile Channel
    Memory Channel是内存中的队列。Memory Channel在不需要关心数据丢失的情景下适用。如果需要关心数据丢失,那么Memory Channel就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。
    File Channel将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。

     Channel选择器是决定Source接收的一个特定事件写入哪些Channel的组件,它们告知Channel处理器,然后由其将事件写入到每个Channel。

    Channel Selector有两种类型:Replicating Channel Selector(default,会把所有的数据发给所有的Channel)和Multiplexing Chanell Selector(选择把哪个数据发到哪个channel)和自定义选择器

    Source 发送的 Event 通过 Channel 选择器来选择以哪种方式写入到 Channel 中,Flume 提供三种类型 Channel 选择器,分别是复制、复用和自定义选择器。

    1. 复制选择器: 一个 Source 以复制的方式将一个 Event 同时写入到多个 Channel 中,不同的 Sink 可以从不同的 Channel 中获取相同的 Event,比如一份日志数据同时写 Kafka 和 HDFS,一个 Event 同时写入两个 Channel,然后不同类型的 Sink 发送到不同的外部存储。
    • 该选择器复制每个事件到通过Source的channels参数所指定的所有的Channels中。复制Channel选择器还有一个可选参数optional,该参数是空格分隔的channel名字列表。此参数指定的所有channel都认为是可选的,所以如果事件写入这些channel时,若有失败发生,会忽略。而写入其他channel失败时会抛出异常。

      2. (多路)复用选择器: 需要和拦截器配合使用,根据 Event 的头信息中不同键值数据来判断 Event 应该写入哪个 Channel 中。

    还有一种是kafka channel,它是没有sink;

       3. 自定义选择器

    Sink

    数据去向常见的目的地有:HDFS、Kafkalogger(记录INFO级别的日志)avro(下一层的Flume)、File、Hbase、solr、ipc、thrift自定义等
    Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。
    Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。

    Sink groups允许组织多个sink到一个实体上。 Sink processors(处理器)能够提供在组内所有Sink之间实现负载均衡的能力,而且在失败的情况下能够进行故障转移从一个Sink到另一个Sink。简单的说就是一个source 对应一个Sinkgroups,即多个sink,这里实际上复用/复制情况差不多,只是这里考虑的是可靠性与性能,即故障转移与负载均衡的设置。

    DefaultSink Processor 接收单一的Sink,不强制用户为Sink创建Processor
    FailoverSink Processor故障转移处理器会通过配置维护了一个优先级列表。保证每一个有效的事件都会被处理。
    工作原理是将连续失败sink分配到一个池中,在那里被分配一个冷冻期,在这个冷冻期里,这个sink不会做任何事。一旦sink成功发送一个event,sink将被还原到live 池中。
    Load balancing Processor负载均衡处理器提供在多个Sink之间负载平衡的能力。实现支持通过① round_robin(轮询)或者② random(随机)参数来实现负载分发,默认情况下使用round_robin

    事务

    Put事务流程:

    doPut将批数据先写入临时缓冲区putList; doCommit:检查channel内存队列是否足够合并; doRollback:channel内存队列空间不足,回滚数据;

    尝试put先把数据put到putList里边,然后commit提交,查看channel中事务是否提交成功,如果都提交成功了就把这个事件从putList中拿出来;如果失败就重写提交,rollTback到putList;

    Take事务:

    doTake先将数据取到临时缓冲区takeList; doCommit如果数据全部发送成功,则清除临时缓冲区takeList; doRollback数据发送过程中如果出现异常,rollback将临时缓存takeList中的数据归还给channel内存队列;

    拉取事件到takeList中,尝试提交,如果提交成功就把takeList中数据清除掉;如果提交失败就重写提交,返回到channel后重写提交;

    这种事务:flume有可能有重复的数据;

    Event

    传输单元,Flume数据传输的基本单元,以事件的形式将数据从源头送至目的地。  Event由可选的header和载有数据的一个byte array 构成。Header是容纳了key-value字符串对的HashMap。 

    拦截器(interceptor)
    拦截器是简单插件式组件,设置在Source和Source写入数据的Channel之间。每个拦截器实例只处理同一个Source接收到的事件。
    因为拦截器必须在事件写入channel之前完成转换操作,只有当拦截器已成功转换事件后,channel(和任何其他可能产生超时的source)才会响应发送事件的客户端或sink。

    Flume官方提供了一些常用的拦截器,也可以自定义拦截器对日志进行处理。自定义拦截器只需以下几步:

    •     使用的Flume版本为:apache-flume-1.6.0

    实现org.apache.flume.interceptor.Interceptor接口

    Flume拓扑结构

    ① 串联:channel多,但flume层数不宜过多;这种模式是将多个flume给顺序连接起来了,从最初的source开始到最终sink传送的目的存储系统。此模式不建议桥接过多的flume数量, flume数量过多不仅会影响传输速率,而且一旦传输过程中某个节点flume宕机,会影响整个传输系统。

    ② 单source,多channel、sink; 一个channel对应多个sink; 多个channel对应多个sink;

                ---->sink1         ---->channel1 --->sink1

    单source ---> channel----->sink2                 source

               ----->sink3          ------>channel2---->sink2

    Flume支持将事件流向一个或者多个目的地。这种模式将数据源复制到多个channel中,每个channel都有相同的数据,sink可以选择传送的不同的目的地。

    ③ 负载均衡  Flume支持使用将多个sink逻辑上分到一个sink组,flume将数据发送到不同的sink,主要解决负载均衡和故障转移问题。

    负载均衡 :并排的三个channel都是轮询,好处是增大流量并且保证数据的安全;(一个挂了,三个不会都挂;缓冲区比较长,如果hdfs出现问题,两层的channel,多个flune的并联可以保证数据的安全且增大缓冲区)

     

    ④ Flume agent聚合  日常web应用通常分布在上百个服务器,大者甚至上千个、上万个服务器。产生的日志,处理起来也非常麻烦。用flume的这种组合方式能很好的解决这一问题,每台服务器部署一个flume采集日志,传送到一个集中收集日志的flume,再由此flume上传到hdfs、hive、hbase、jms等,进行日志分析。

    安装

    将apache-flume-1.7.0-bin.tar.gz上传到linux的/opt/software目录下
    解压apache-flume-1.7.0-bin.tar.gz到/opt/module/目录下
    [kris@hadoop101 software]$ tar -zxf apache-flume-1.7.0-bin.tar.gz -C /opt/module/
    [kris@hadoop101 module]$ mv apache-flume-1.7.0-bin/ flume
    [kris@hadoop101 conf]$ mv flume-env.sh.template flume-env.sh
    [kris@hadoop101 conf]$ vim flume-env.sh 
    export JAVA_HOME=/opt/module/jdk1.8.0_144

     Flume异常处理

    1)问题描述:如果启动消费Flume抛出如下异常

    ERROR hdfs.HDFSEventSink: process failed

    java.lang.OutOfMemoryError: GC overhead limit exceeded

    2)解决方案步骤:

    (1)在hadoop101服务器的/opt/module/flume/conf/flume-env.sh文件中增加如下配置

    export JAVA_OPTS="-Xms100m -Xmx2000m -Dcom.sun.management.jmxremote"

    同步配置到hadoop102、hadoop103服务器

    [kris@hadoop101 conf]$ xsync flume-env.sh

    1. 监控端口数据--netcat

    监控端口数据:
    端口(netcat)--->flume--->Sink(logger)到控制台

     

    [kris@hadoop101 flume]$ mkdir job
    [kris@hadoop101 flume]$ cd job/
    [kris@hadoop101 job]$ touch flume-netcat-logger.conf
    [kris@hadoop101 job]$ vim flume-netcat-logger.conf
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = netcat #a1的输入源类型为netcat端口类型
    a1.sources.r1.bind = localhost #表示a1的主机
    a1.sources.r1.port = 44444 #表示a1的监听端口
    
    # Describe the sink
    a1.sinks.k1.type = logger #表示a1的输出目的地是控制台logger类型
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory #表示a1的channel类型是memory内存类型
    a1.channels.c1.capacity = 1000 #表示a1的channel总容量是1000个event
    a1.channels.c1.transactionCapacity = 100 #表示a1的channel传输时收集到了100条event以后再去提交到事务
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1 #表示r1和c1连接起来
    a1.sinks.k1.channel = c1 #表示k1和c1连接起来
    View Code
    安装nc工具
    [kris@hadoop101 software]$ sudo yum install -y nc
    判断44444端口是否被占用
    [kris@hadoop101 flume]$ sudo netstat -tunlp | grep 44444
    先开启flume监听端口
    [kris@hadoop101 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console
        --conf conf/表配置文件在conf/目录; --name a1是给agent起名a1; --conf-file job/...表本次读取配置文件是在job文件夹下的flume-netcat-logger.conf文件;
        -D表flume运行时动态修改flume.root.logger参数属性值,并将控制台打印级别设置为INFO级别
    [kris@hadoop101
    ~]$ cd /opt/module/flume/ 向本机的44444端口发送内容 [kris@hadoop101 flume]$ nc localhost 44444 hello OK kris OK 在Flume监听页面观察接收数据情况 2019-02-20 10:01:41,151 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 68 65 6C 6C 6F hello } 2019-02-20 10:01:45,153 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 6B 72 69 73 kris } netstat -nltp [kris@hadoop101 ~]$ netstat -nltp #出现了监听这个端口号说明成功; tcp 0 0 ::ffff:127.0.0.1:44444 :::* LISTEN 4841/java

    nc hadoop102 44444, flume不能接收到

    netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。

    -t或--tcp:显示TCP传输协议的连线状况;

    -u或--udp:显示UDP传输协议的连线状况;

           -n或--numeric:直接使用ip地址,而不通过域名服务器;

           -l或--listening:显示监控中的服务器的Socket;

           -p或--programs:显示正在使用Socket的程序识别码(PID)和程序名称;

    2. 实时读取本地文件到HDFS

    实时读取本地文件到HDFS:
    hive.log(exec)--->flume--->Sink(HDFS)

    取Linux系统中的文件,就得按照Linux命令的规则执行命令。由于Hive日志在Linux系统中所以读取文件的类型选择:exec即execute执行的意思。表示执行Linux命令来读取文件。

    1.Flume要想将数据输出到HDFS,必须持有Hadoop相关jar包

    将commons-configuration-1.6.jar、
    hadoop-auth-2.7.2.jar、
    hadoop-common-2.7.2.jar、
    hadoop-hdfs-2.7.2.jar、
    commons-io-2.4.jar、
    htrace-core-3.1.0-incubating.jar
    拷贝到/opt/module/flume/lib文件夹下

    2.创建flume-file-hdfs.conf文件

    [kris@hadoop101 job]$ vim flume-file-hdfs.conf
    # Name the components on this agent
    a2.sources = r2
    a2.sinks = k2
    a2.channels = c2
    
    # Describe/configure the source
    a2.sources.r2.type = exec
    a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
    a2.sources.r2.shell = /bin/bash -c
    
    # Describe the sink
    a2.sinks.k2.type = hdfs
    a2.sinks.k2.hdfs.path = hdfs://hadoop102:9000/flume/%Y%m%d/%H
    #上传文件的前缀
    a2.sinks.k2.hdfs.filePrefix = logs-
    #是否按照时间滚动文件夹
    a2.sinks.k2.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k2.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k2.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k2.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k2.hdfs.batchSize = 1000
    #设置文件类型,可支持压缩
    a2.sinks.k2.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k2.hdfs.rollInterval = 60
    #设置每个文件的滚动大小
    a2.sinks.k2.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k2.hdfs.rollCount = 0
    
    # Use a channel which buffers events in memory
    a2.channels.c2.type = memory
    a2.channels.c2.capacity = 1000
    a2.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r2.channels = c2
    a2.sinks.k2.channel = c2
    View Code

    tail -F /opt/module/hive/logs/hive.log    -F实时监控

    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a2 -f job/flume-file-hdfs.conf 
    

    开启Hadoop和Hive并操作Hive产生日志 sbin/start-dfs.sh sbin/start-yarn.sh bin/hive

    在HDFS上查看文件。

     3. 实时读取目录文件到HDFS

     

    实时读取目录文件到HDFS:
    目录dir(spooldir)--->flume--->Sink(HDFS)

    [kris@hadoop101 job]$ vim flume-dir-hdfs.conf
    a3.sources = r3
    a3.sinks = k3
    a3.channels = c3
    
    # Describe/configure the source
    a3.sources.r3.type = spooldir                      #定义source类型为目录
    a3.sources.r3.spoolDir = /opt/module/flume/upload #定义监控日志
    a3.sources.r3.fileSuffix = .COMPLETED             #定义文件上传完,后缀
    a3.sources.r3.fileHeader = true                   #是否有文件头
    #忽略所有以.tmp结尾的文件,不上传
    a3.sources.r3.ignorePattern = ([^ ]*.tmp)
    
    # Describe the sink
    a3.sinks.k3.type = hdfs
    a3.sinks.k3.hdfs.path = hdfs://hadoop101:9000/flume/upload/%Y%m%d/%H
    #上传文件的前缀
    a3.sinks.k3.hdfs.filePrefix = upload-
    #是否按照时间滚动文件夹
    a3.sinks.k3.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k3.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k3.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k3.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k3.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k3.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k3.hdfs.rollInterval = 60
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k3.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k3.hdfs.rollCount = 0
    
    # Use a channel which buffers events in memory
    a3.channels.c3.type = memory
    a3.channels.c3.capacity = 1000
    a3.channels.c3.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r3.channels = c3
    a3.sinks.k3.channel = c3
    View Code
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a3 -f job/flume-dir-hdfs.conf     
    [kris@hadoop101 flume]$ mkdir upload
    [kris@hadoop101 flume]$ cd upload/
    [kris@hadoop101 upload]$ touch kris.txt
    [kris@hadoop101 upload]$ touch kris.tmp
    [kris@hadoop101 upload]$ touch kris.log
    [kris@hadoop101 upload]$ ll  ##创建文件,hdfs上就会生成/flume/upload/20190224/11/upload-155...的文件;不添加内容就是空的;vim kri.log.COMPLETED写入东西hdfs上还是空的,它只是监控文件夹的创建;
    总用量 0
    -rw-rw-r--. 1 kris kris 0 2月  20 11:09 kris.log.COMPLETED
    -rw-rw-r--. 1 kris kris 0 2月  20 11:08 kris.tmp
    -rw-rw-r--. 1 kris kris 0 2月  20 11:08 kris.txt.COMPLETED
    [kris@hadoop101 flume]$ cp README.md upload/
    [kris@hadoop101 flume]$ cp LICENSE upload/
    [kris@hadoop101 upload]$ ll
    总用量 32
    -rw-rw-r--. 1 kris kris     0 2月  20 11:09 kris.log.COMPLETED
    -rw-rw-r--. 1 kris kris     0 2月  20 11:08 kris.tmp
    -rw-rw-r--. 1 kris kris     0 2月  20 11:08 kris.txt.COMPLETED
    -rw-r--r--. 1 kris kris 27625 2月  20 11:14 LICENSE.COMPLETED
    -rw-r--r--. 1 kris kris  2520 2月  20 11:13 README.md.COMPLETED
    在upload中创建一个文件,就会在hdfs上创建一个文件;
    也可在文件里边追加数据

     

    4. 单数据源多出口(选择器)

    单Source多Channel、Sink

    单数据源多出口(选择器):单Source多Channel、Sink
    hive.log(exec)---->flume1--Sink1(avro)-->flume2--->Sink(HDFS)
               ---Sink2(avro)-->flume3--->Sink(file roll本地目录文件data)

    准备工作

           在/opt/module/flume/job目录下创建group1文件夹
    
    [kris@hadoop101 job]$ cd group1//opt/module/datas/目录下创建flume3文件夹
    
    [kris@hadoop101 datas]$ mkdir flume3

    1.创建flume-file-flume.conf

    配置1个接收日志文件的source和两个channel、两个sink,分别输送给flume-flume-hdfs和flume-flume-dir。

    [kris@hadoop101 group1]$ vim flume-file-flume.conf
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1 k2
    a1.channels = c1 c2
    # 将数据流复制给所有channel
    a1.sources.r1.selector.type = replicating
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    # sink端的avro是一个数据发送者
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = hadoop101
    a1.sinks.k1.port = 4141
    
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = hadoop101
    a1.sinks.k2.port = 4142
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.channels.c2.type = memory
    a1.channels.c2.capacity = 1000
    a1.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1 c2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c2
    View Code

    Avro是由Hadoop创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。

    注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。

    [kris@hadoop101 group1]$ vim flume-flume-hdfs.conf
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    # source端的avro是一个数据接收服务
    a2.sources.r1.type = avro
    a2.sources.r1.bind = hadoop101
    a2.sources.r1.port = 4141
    
    # Describe the sink
    a2.sinks.k1.type = hdfs
    a2.sinks.k1.hdfs.path = hdfs://hadoop101:9000/flume2/%Y%m%d/%H
    #上传文件的前缀
    a2.sinks.k1.hdfs.filePrefix = flume2-
    #是否按照时间滚动文件夹
    a2.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a2.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a2.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k1.hdfs.rollCount = 0
    
    # Describe the channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    View Code
    [kris@hadoop101 group1]$ vim flume-flume-dir.conf
    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c2
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = hadoop101
    a3.sources.r1.port = 4142
    
    # Describe the sink
    a3.sinks.k1.type = file_roll
    a3.sinks.k1.sink.directory = /opt/module/data/flume3
    
    # Describe the channel
    a3.channels.c2.type = memory
    a3.channels.c2.capacity = 1000
    a3.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c2
    a3.sinks.k1.channel = c2
    View Code
    执行配置文件
    分别开启对应配置文件:flume-flume-dir,flume-flume-hdfs,flume-file-flume。//从sink端往source端开启
    
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a3 -f job/group1/flume-flume-dir.conf 
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a2 -f job/group1/flume-flume-hdfs.conf 
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/group1/flume-file-flume.conf 
    
    启动Hadoop和Hive
    start-dfs.sh
    start-yarn.sh
    bin/hive

    检查HDFS上数据

    检查/opt/module/datas/flume3目录中数据

    [kris@hadoop101 ~]$ cd /opt/module/datas/flume3/
    [kris@hadoop101 flume3]$ ll
    总用量 4
    -rw-rw-r--. 1 kris kris    0 2月  20 11:49 1550634573721-1
    -rw-rw-r--. 1 kris kris    0 2月  20 11:54 1550634573721-10
    -rw-rw-r--. 1 kris kris    0 2月  20 11:54 1550634573721-11
    -rw-rw-r--. 1 kris kris    0 2月  20 11:50 1550634573721-2
    -rw-rw-r--. 1 kris kris    0 2月  20 11:50 1550634573721-3
    -rw-rw-r--. 1 kris kris    0 2月  20 11:51 1550634573721-4
    -rw-rw-r--. 1 kris kris    0 2月  20 11:51 1550634573721-5
    -rw-rw-r--. 1 kris kris    0 2月  20 11:52 1550634573721-6
    -rw-rw-r--. 1 kris kris    0 2月  20 11:52 1550634573721-7
    -rw-rw-r--. 1 kris kris    0 2月  20 11:53 1550634573721-8
    -rw-rw-r--. 1 kris kris 1738 2月  20 11:53 1550634573721-9
    [kris@hadoop101 flume3]$ cat 1550634573721-9
    2019-02-20 11:00:42,459 INFO  [main]: metastore.hivemetastoressimpl (HiveMetaStoreFsImpl.java:deleteDir(53)) - Deleted the diretory hdfs://hadoop101:9000/user/hive/warehouse/student22
    2019-02-20 11:00:42,460 INFO  [main]: log.PerfLogger (PerfLogger.java:PerfLogEnd(148)) - </PERFLOG method=runTasks start=1550631641861 end=1550631642460 duration=599 from=org.apache.hadoop.hive.ql.Driver>
    2019-02-20 11:00:42,461 INFO  [main]: log.PerfLogger (PerfLogger.java:PerfLogEnd(148)) - </PERFLOG method=Driver.execute start=1550631641860 end=1550631642461 duration=601 from=org.apache.hadoop.hive.ql.Driver>
    2019-02-20 11:00:42,461 INFO  [main]: ql.Driver (SessionState.java:printInfo(951)) - OK
    2019-02-20 11:00:42,461 INFO  [main]: log.PerfLogger (PerfLogger.java:PerfLogBegin(121)) - <PERFLOG method=releaseLocks from=org.apache.hadoop.hive.ql.Driver>
    2019-02-20 11:00:42,461 INFO  [main]: log.PerfLogger (PerfLogger.java:PerfLogEnd(148)) - </PERFLOG method=releaseLocks start=1550631642461 end=1550631642461 duration=0 from=org.apache.hadoop.hive.ql.Driver>
    2019-02-20 11:00:42,461 INFO  [main]: log.PerfLogger (PerfLogger.java:PerfLogEnd(148)) - </PERFLOG method=Driver.run start=1550631641638 end=1550631642461 duration=823 from=org.apache.hadoop.hive.ql.Driver>
    2019-02-20 11:00:42,461 INFO  [main]: CliDriver (SessionState.java:printInfo(951)) - Time taken: 0.824 seconds
    2019-02-20 11:00:42,461 INFO  [main]: log.PerfLogger (PerfLogger.java:PerfLogBegin(121)) - <PERFLOG method=releaseLocks from=org.apache.hadoop.hive.ql.Driver>
    2019-02-20 11:00:42,462 INFO  [main]: log.PerfLogger (PerfLogger.java:PerfLogEnd(148)) - </PERFLOG method=releaseLocks start=1550631642461 end=1550631642462 duration=1 from=org.apache.hadoop.hive.ql.Driver>

    5. 单数据源多出口案例(Sink组)

    单Source、Channel多Sink(负载均衡)  

    Flume 的负载均衡和故障转移

    目的是为了提高整个系统的容错能力和稳定性。简单配置就可以轻松实现,首先需要设置 Sink 组,同一个 Sink 组内有多个子 Sink,不同 Sink 之间可以配置成负载均衡或者故障转移。

    单数据源多出口(Sink组): flum1-load_balance
    端口(netcat)--->flume1---Sink1(avro)-->flume2---Sink(Logger控制台)
              ---Sink2(avro)-->flume3---Sink(Logger控制台)

    flume1配置了数据均衡的输出到各个sink端:见下

    [kris@hadoop101 group2]$ cat flume-netcat-flume.conf
    # Name the components on this agent
    a1.sources = r1
    a1.channels = c1
    a1.sinkgroups = g1
    a1.sinks = k1 k2
    
    # Describe/configure the source
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = localhost
    a1.sources.r1.port = 44444
    
    a1.sinkgroups.g1.processor.type = load_balance
    a1.sinkgroups.g1.processor.backoff = true
    a1.sinkgroups.g1.processor.selector = round_robin
    a1.sinkgroups.g1.processor.selector.maxTimeOut=10000
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = hadoop101
    a1.sinks.k1.port = 4141
    
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = hadoop101
    a1.sinks.k2.port = 4142
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinkgroups.g1.sinks = k1 k2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c1
    View Code
    [kris@hadoop101 group2]$ cat flume-flume-console1.conf  
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = hadoop101
    a2.sources.r1.port = 4141
    
    # Describe the sink
    a2.sinks.k1.type = logger
    
    # Describe the channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    View Code
    [kris@hadoop101 group2]$ cat flume-flume-console2.conf 
    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c2
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = hadoop101
    a3.sources.r1.port = 4142
    
    # Describe the sink
    a3.sinks.k1.type = logger
    
    # Describe the channel
    a3.channels.c2.type = memory
    a3.channels.c2.capacity = 1000
    a3.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c2
    a3.sinks.k1.channel = c2
    View Code
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a3 -f  job/group2/flume-flume-console2.conf  -Dflume.root.logger=INFO,console
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a2 -f job/group2/flume-flume-console1.conf -Dflume.root.logger.INFO,console
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/group2/flume-netcat-flume.conf 
    [kris@hadoop101 group2]$ nc localhost 44444
    1
    OK
    1
    OK
    2
    OK
    3
    OK
    4
    
    oggerSink.java:95)] Event: { headers:{} body: 31                                              1 }
    2019-02-20 15:26:37,828 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 31                                              1 }
    2019-02-20 15:26:37,828 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 32                                              2 }
    2019-02-20 15:26:37,829 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 33                                              3 }
    2019-02-20 15:26:37,829 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 34                                              4 }
    2019-02-20 15:26:37,830 (SinkRunne
    
    2019-02-20 15:27:06,706 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 61                                              a }
    2019-02-20 15:27:06,706 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 62                                              b }
    2019-02-20 15:27:06,707 

    6. 多数据源汇总

    多Source汇总数据到单Flume

    7. 多数据源汇总:

    group.log(exec)--->flume1--Sink(avro;hadoop103--4141)-->flume3---Sink(Logger控制台)
      端口(netcat)-->flume2--Sink(avro;hadoop103-4141)-->flume3---Sink(Logger控制台)

    分发Flume

    [kris@hadoop101 module]$ xsync flume
    在hadoop101、hadoop102以及hadoop103的/opt/module/flume/job目录下创建一个group3文件夹。
    [kris@hadoop101 job]$ mkdir group3
    [kris@hadoop102 job]$ mkdir group3
    [kris@hadoop103 job]$ mkdir group3

    1.创建flume1-logger-flume.conf

    配置Source用于监控hive.log文件,配置Sink输出数据到下一级Flume。

    在hadoop102上创建配置文件并打开

    [kris@hadoop102 group3]$ vim flume1-logger-flume.conf
    # Name the components on this agent
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/module/group.log
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = hadoop103
    a1.sinks.k1.port = 4141
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    View Code

    2.创建flume2-netcat-flume.conf

    配置Source监控端口44444数据流,配置Sink数据到下一级Flume:

    在hadoop101上创建配置文件并打开

    [kris@hadoop101 group3]$ vim flume2-netcat-flume.conf
    # Name the components on this agent
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = netcat
    a2.sources.r1.bind = hadoop101
    a2.sources.r1.port = 44444
    
    # Describe the sink
    a2.sinks.k1.type = avro
    a2.sinks.k1.hostname = hadoop103
    a2.sinks.k1.port = 4141
    
    # Use a channel which buffers events in memory
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    View Code

    3.创建flume3-flume-logger.conf

    配置source用于接收flume1与flume2发送过来的数据流,最终合并后sink到控制台。

    在hadoop103上创建配置文件并打开;因为前面两个avro都是hadoop103: 4141,它们的ip和端口是一样的,所以只需配置一个avro即可

    [kris@hadoop103 group3]$ vim flume3-flume-logger.conf
    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = hadoop103
    a3.sources.r1.port = 4141
    
    # Describe the sink
    # Describe the sink
    a3.sinks.k1.type = logger
    
    # Describe the channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    View Code

    4.执行配置文件

    分别开启对应配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf,flume1-logger-flume.conf。

    [kris@hadoop103 flume]$ bin/flume-ng agent -c conf/ -n a3 -f job/group3/flume3-flume-logger.conf -Dflume.root.logger=INFO,console
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a2 -f job/group3/flume2-netcat-flume.conf 
    [kris@hadoop102 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/group3/flume1-logger-flume.conf 
    在hadoop102上向/opt/module目录下的group.log追加内容
    [kris@hadoop102 module]$ echo "Hello World" > group.log
    [kris@hadoop102 module]$ ll
    总用量 24
    drwxrwxr-x. 10 kris kris 4096 2月  20 11:07 flume
    -rw-rw-r--.  1 kris kris   12 2月  20 16:13 group.log
    在hadoop101上向44444端口发送数据
    [kris@hadoop101 flume]$ nc hadoop101 44444
    1
    OK
    2
    OK
    3
    OK
    4
    
    检查hadoop103上数据
    2019-02-20 16:13:20,748 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 48 65 6C 6C 6F 20 57 6F 72 6C 64                Hello World }
    2019-02-20 16:14:46,774 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 31                                              1 }
    2019-02-20 16:14:46,775 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 32                                              2 }

    8. 练习

    案例需求:

    1)flume-1监控hive.log日志,flume-1的数据传送给flume-2,flume-2将数据追加到本地文件,同时将数据传输到flume-3。

    2)flume-4监控本地另一个自己创建的文件any.txt,并将数据传送给flume-3。

    3)flume-3将汇总数据写入到HDFS。

    请先画出结构图,再开始编写任务脚本。

    hive.log(exec)--->flume-1 ---Sink1(avro;hadoop101:4141) --> flume-2--Sink1(logger本地文件)  
                                                                       --Sink2(avro;hadoop101:4142) --> flume-3--Sink(HDFS)
                                            本地any.txt(exec)--->flume-4--Sink(avro;hadoop101:4142)-->flume-3到HDFS
    启动3、2、1、4

    flume-1:
    vim flume1-file-flume.conf

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    # sink端的avro是一个数据发送者
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = hadoop101 
    a1.sinks.k1.port = 4141
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    View Code

    flume2:
    vim flume2-flume-dir.conf

    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1 k2
    a2.channels = c1 c2
    # 将数据流复制给所有channel
    a2.sources.r1.selector.type = replicating
    
    # Describe/configure the source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = hadoop101
    a2.sources.r1.port = 4141
    
    # Describe the sink
    a2.sinks.k1.type = logger
    a2.sinks.k2.type = avro
    a2.sinks.k2.hostname = hadoop101
    a2.sinks.k2.port = 4142
    
    # Describe the channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Describe the channel
    a2.channels.c2.type = memory
    a2.channels.c2.capacity = 1000
    a2.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels =c1 c2
    a2.sinks.k1.channel = c1
    a2.sinks.k2.channel = c2
    View Code

    flume3:
    vim flume3-flume-hdfs.conf

    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # Describe/configure the source
    # source端的avro是一个数据接收服务
    a3.sources.r1.type = avro
    a3.sources.r1.bind = hadoop101
    a3.sources.r1.port = 4142
    
    # Describe the sink
    a3.sinks.k1.type = hdfs
    a3.sinks.k1.hdfs.path = hdfs://hadoop101:9000/flume3/%Y%m%d/%H
    #上传文件的前缀
    a3.sinks.k1.hdfs.filePrefix = flume3-
    #是否按照时间滚动文件夹
    a3.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k1.hdfs.rollCount = 0
    
    # Describe the channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    View Code

    flume4:
    vim flume4-file-flume.conf

    # Name the components on this agent
    a4.sources = r1
    a4.sinks = k1
    a4.channels = c1
    
    # Describe/configure the source
    a4.sources.r1.type = exec
    a4.sources.r1.command = tail -F /opt/module/datas/any.txt
    a4.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    # sink端的avro是一个数据发送者
    a4.sinks.k1.type = avro
    a4.sinks.k1.hostname = hadoop101
    a4.sinks.k1.port = 4142
    
    # Describe the channel
    a4.channels.c1.type = memory
    a4.channels.c1.capacity = 1000
    a4.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a4.sources.r1.channels = c1
    a4.sinks.k1.channel = c1
    View Code

    启动

    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a3 -f job/group4/flume3-flume-hdfs.conf 
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a2 -f job/group4/flume2-flume-dir.conf -Dflume.root.logger=INFO,console
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/group4/flume1-file-flume.conf 
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a4 -f job/group4/flume4-file-flume.conf 
    数据来源:flume1;hive.log和flume4| any.txt文件
    
    [kris@hadoop101 datas]$ cat any.txt  ##文件发生变化hdfs上会实时更新
    1
    2
    3
    4
    5
    《疑犯追踪》    悬疑,动作,科幻,剧情
    《Lie to me》   悬疑,警匪,动作,心理,剧情
    《战狼2》       战争,动作,灾难
    II
    Love
    You
    [kris@hadoop101 datas]$ pwd
    /opt/module/datas

    9. 自定义Source

    Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。官方提供的source类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些source。

    官方也提供了自定义source的接口:

    https://flume.apache.org/FlumeDeveloperGuide.html#source根据官方说明自定义MySource需要继承AbstractSource类并实现ConfigurablePollableSource接口。

    实现相应方法:

    getBackOffSleepIncrement()//暂不用

    getMaxBackOffSleepInterval()//暂不用

    configure(Context context)//初始化context(读取配置文件内容)

    process()//获取数据封装成event并写入channel,这个方法将被循环调用。

    使用场景:读取MySQL数据或者其他文件系统。

    需求:使用flume接收数据,并给每条数据添加前缀,输出到控制台。前缀可从flume配置文件中配置。

    import org.apache.flume.Context;
    import org.apache.flume.EventDeliveryException;
    import org.apache.flume.PollableSource;
    import org.apache.flume.conf.Configurable;
    import org.apache.flume.event.SimpleEvent;
    import org.apache.flume.source.AbstractSource;
    
    import java.util.HashMap;
    import java.util.Map;
    
    public class MySource extends AbstractSource implements Configurable, PollableSource {
        private String prefix;
        private Long delay;
        /**
         * 数据处理方法,被flume循环调用
         * @return 数据读取状态
         * @throws EventDeliveryException 我们异常就回滚
         */
        public Status process() throws EventDeliveryException {
            Status status = null;  //Status是个enum类型,成功或失败
            //创建事件
            SimpleEvent event = new SimpleEvent(); //Event由可选的header和载有数据的一个byte array 构成
            Map<String, String> headerMap = new HashMap<String, String>(); //Header是容纳了key-value字符串对的HashMap。
            for (int i = 0; i < 5; i++){
                try {
                    event.setHeaders(headerMap); //封装事件
                    event.setBody((prefix + "LLL" + i).getBytes());
                    getChannelProcessor().processEvent(event);//将事件写入channel
                    status = Status.READY;
                    Thread.sleep(delay);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                    return Status.BACKOFF;
                }
    
            }
            return status;
        }
        public long getBackOffSleepIncrement() {
            return 0;
        }
    
        public long getMaxBackOffSleepInterval() {
            return 0;
        }
    
        /**
         * 配置自定义的Source
         * @param context
         */
        public void configure(Context context) {
            prefix = context.getString("prefix", "Hello");
            delay = context.getLong("delay", 1000L);
    
        }
    }

    测试

    1)打包

    将写好的代码打包,并放到flume的lib目录(/opt/module/flume)下。

    2)配置文件

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = com.atguigu.source.MySource
    a1.sources.r1.delay = 1000
    #a1.sources.r1.field = HelloWorld
    
    # Describe the sink
    a1.sinks.k1.type = logger
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    View Code
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/mysource-flume-logger.conf -Dflume.root.logger=INFO,console

    10. 自定义Sink

    Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

    Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。

    Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。官方提供的Sink类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些Sink。

    官方也提供了自定义source的接口:

    https://flume.apache.org/FlumeDeveloperGuide.html#sink根据官方说明自定义MySink需要继承AbstractSink类并实现Configurable接口。

    实现相应方法:

    configure(Context context)//初始化context(读取配置文件内容)

    process()//从Channel读取获取数据(event),这个方法将被循环调用。

    使用场景:读取Channel数据写入MySQL或者其他文件系统。

    需求:使用flume接收数据,并在Sink端给每条数据添加前缀和后缀,输出到控制台。前后缀可在flume任务配置文件中配置。

    import org.apache.flume.*;
    import org.apache.flume.conf.Configurable;
    import org.apache.flume.sink.AbstractSink;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    public class MySink extends AbstractSink implements Configurable {
    
        private static final Logger LOGGER = LoggerFactory.getLogger(AbstractSink.class); //创建logger对象
        private String prefix;
        private String suffix;
    
        /**
         * Sink从channel中拉取数据并处理
         * @return
         * @throws EventDeliveryException
         */
        public Status process() throws EventDeliveryException {
    
            Status status = null; //声明返回值状态
            Event event;//声明事件
            Channel channel = getChannel();//获取当前sink绑定的channel
            Transaction transaction = channel.getTransaction();//获取事务
    
            transaction.begin(); //开启事务
            try {
                while ((event = channel.take()) == null) {
                    Thread.sleep(500);
                }
                    LOGGER.info(prefix + new String(event.getBody()) + suffix);
                    status = Status.READY;
                    transaction.commit(); //事务提交
    
            } catch (Exception e) {
                e.printStackTrace();
                status = Status.BACKOFF;
    
                transaction.rollback(); //事务回滚
            } finally {
                transaction.close(); //关闭事务
            }
                return status;
        }
    
        /**
         * 设置Sink
         * @param context 上下文环境
         */
        public void configure(Context context) {
            prefix = context.getString("prefix", "Hello");
            suffix = context.getString("suffix", "kris");
        }
    }

    测试

    1)打包

    将写好的代码打包,并放到flume的lib目录(/opt/module/flume)下。

    2)配置文件

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = localhost
    a1.sources.r1.port = 44444
    
    # Describe the sink
    a1.sinks.k1.type = com.atguigu.source.MySink
    #a1.sinks.k1.prefix = kris:
    a1.sinks.k1.suffix = :kris
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    View Code
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/mysource-flume-netcat.conf -Dflume.root.logger=INFO,console 
    
    [kris@hadoop101 job]$ nc localhost 44444
    1
    OK
    2
    2019-02-24 16:27:25,078 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - com.atguigu.source.MySink.process(MySink.java:32)] kris:1:kris
    2019-02-24 16:27:25,777 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - com.atguigu.source.MySink.process(MySink.java:32)] kris:2:kris

    11. Flume监控之Ganglia

    Ganglia的安装与部署

    安装ganglia 、httpd服务与php、其他依赖

    sudo rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
    sudo yum -y install httpd php rrdtool perl-rrdtool rrdtool-devel apr-devel ganglia-gmetad ganglia-web ganglia-gmond

    Ganglia由gmond、gmetad和gweb三部分组成。

    gmond(Ganglia Monitoring Daemon)是一种轻量级服务,安装在每台需要收集指标数据的节点主机上。使用gmond,你可以很容易收集很多系统指标数据,如CPU、内存、磁盘、网络和活跃进程的数据等。

    gmetad(Ganglia Meta Daemon)整合所有信息,并将其以RRD格式存储至磁盘的服务。

    gweb(Ganglia Web)Ganglia可视化工具,gweb是一种利用浏览器显示gmetad所存储数据的PHP前端。在Web界面中以图表方式展现集群的运行状态下收集的多种不同指标数据。

    配置

    1)修改配置文件/etc/httpd/conf.d/ganglia.conf
      [kris@hadoop101 flume]$ sudo vim /etc/httpd/conf.d/ganglia.conf
    2)修改为红颜色的配置:
    # Ganglia monitoring system php web frontend
    Alias /ganglia /usr/share/ganglia
    <Location /ganglia>
      Order deny,allow
      #Deny from all
      Allow from all
      # Allow from 127.0.0.1
      # Allow from ::1
      # Allow from .example.com
    </Location>
    3) 修改配置文件/etc/ganglia/gmetad.conf
      [kris@hadoop101 flume]$ sudo vim /etc/ganglia/gmetad.conf
      修改为:
      data_source "hadoop101" 192.168.1.101
    3) 修改配置文件/etc/ganglia/gmond.conf
      [kris@hadoop101 flume]$ sudo vim /etc/ganglia/gmond.conf 
      修改为:
    cluster {
      name = "hadoop101"
      owner = "unspecified"
      latlong = "unspecified"
      url = "unspecified"
    }
    udp_send_channel {
      #bind_hostname = yes # Highly recommended, soon to be default.
                           # This option tells gmond to use a source address
                           # that resolves to the machine's hostname.  Without
                           # this, the metrics may appear to come from any
                           # interface and the DNS names associated with
                           # those IPs will be used to create the RRDs.
      # mcast_join = 239.2.11.71
      host = 192.168.1.101
      port = 8649
      ttl = 1
    }
    udp_recv_channel {
      # mcast_join = 239.2.11.71
      port = 8649
      bind = 192.168.1.101
      retry_bind = true
      # Size of the UDP buffer. If you are handling lots of metrics you really
      # should bump it up to e.g. 10MB or even higher.
      # buffer = 10485760
    }
    4) 修改配置文件/etc/selinux/config
      [kris@hadoop101 flume]$ sudo vim /etc/selinux/config
      修改为:
    # This file controls the state of SELinux on the system.
    # SELINUX= can take one of these three values:
    #     enforcing - SELinux security policy is enforced.
    #     permissive - SELinux prints warnings instead of enforcing.
    #     disabled - No SELinux policy is loaded.
    SELINUX=disabled
    # SELINUXTYPE= can take one of these two values:
    #     targeted - Targeted processes are protected,
    #     mls - Multi Level Security protection.
    SELINUXTYPE=targeted
    尖叫提示:selinux本次生效关闭必须重启,如果此时不想重启,可以临时生效之: [kris@hadoop101 flume]$
    sudo setenforce 0
    1.启动
    1
    ) 启动ganglia [kris@hadoop101 flume]$ sudo service httpd start [kris@hadoop101 flume]$ sudo service gmetad start [kris@hadoop101 flume]$ sudo service gmond start 2) 打开网页浏览ganglia页面 http://192.168.1.101/ganglia 尖叫提示:如果完成以上操作依然出现权限不足错误,请修改/var/lib/ganglia目录的权限: [kris@hadoop101 flume]$ sudo chmod -R 777 /var/lib/ganglia
    2 操作Flume测试监控   1) 修改/opt/module/flume/conf目录下的flume-env.sh配置: JAVA_OPTS="-Dflume.monitoring.type=ganglia -Dflume.monitoring.hosts=192.168.1.101:8649 -Xms100m -Xmx200m"   2) 启动Flume任务 [kris@hadoop101 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-netcat-logger.conf -Dflume.root.logger==INFO,console -Dflume.monitoring.type=ganglia -Dflume.monitoring.hosts=192.168.1.101:8649
    简写如下:
    [kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console -Dflume.monitoring.type=ganglia -Dflume.monitoring.hosts=192.168.1.101:8649
    3) 发送数据观察ganglia监测图 [kris@hadoop101 flume]$ nc localhost 44444

    flume.CHANNEL.c1.EventPutSuccessCount   flume发送的单例叫event,put叫成功接收的数据,就是往channel里边put的数据

    flume.CHANNEL.c1.EventTakeSuccessCount  这个是take的数据,更日志数据做对比看有没有丢数据

     flume.CHANNEL.c1.ChannelFillPercentage 这个数只要不满,就不会丢数据,如果1.0表示全部填满了;

  • 相关阅读:
    mysql workbench 建表时PK, NN, UQ, BIN, UN, ZF, AI
    Asan检测内存读越界
    C 实现 C++ 的面向对象特性(封装、继承、多态)
    VIBE算法
    Go 大坑 nil
    求二叉树中节点的最大距离
    计算[1,N]范围内含有7的数字的个数
    一组便于创建线程和线程池的简单封装函数
    用C#执行doc命令
    可以自由停靠的窗体!
  • 原文地址:https://www.cnblogs.com/shengyang17/p/10405979.html
Copyright © 2011-2022 走看看