zoukankan      html  css  js  c++  java
  • Linux设备驱动程序学习(17)-USB 驱动程序(二)

    内核使用2.6.29.4
    USB设备其实很复杂,但是Linux内核提供了一个称为USB core的子系统来处理了大部分的复杂工作,所以这里所描述的是驱动程序和USB core之间的接口。
    在USB设备组织结构中,从上到下分为设备(device)、配置(config)、接口(interface)和端点(endpoint)四个层次。
    对于这四个层次的简单描述如下:
        设备通常具有一个或多个的配置
        配置经常具有一个或多个的接口
        接口通常具有一个或多个的设置
        接口没有或具有一个以上的端点
    设备
    很明显,地代表了一个插入的USB设备,在内核使用数据结构 struct usb_device来描述整个USB设备。(include/linux/usb.h)

    struct usb_device {
    int devnum; //设备号,是在USB总线的地址
    char devpath [16]; //用于消息的设备ID字符串
    enum usb_device_state state; //设备状态:已配置、未连接等等
    enum usb_device_speed speed; //设备速度:高速、全速、低速或错误
    struct usb_tt *tt; //处理传输者信息;用于低速、全速设备和高速HUB
    int ttport; //位于tt HUB的设备口
    unsigned int toggle[2]; //每个端点的占一位,表明端点的方向([0] = IN, [1] = OUT)
    struct usb_device *parent; //上一级HUB指针
    struct usb_bus *bus; //总线指针
    struct usb_host_endpoint ep0; //端点0数据
    struct device dev; //一般的设备接口数据结构
    struct usb_device_descriptor descriptor; //USB设备描述符
    struct usb_host_config *config; //设备的所有配置
    struct usb_host_config *actconfig; //被激活的设备配置
    struct usb_host_endpoint *ep_in[16]; //输入端点数组
    struct usb_host_endpoint *ep_out[16]; //输出端点数组
    char **rawdescriptors; //每个配置的raw描述符
    unsigned short bus_mA; //可使用的总线电流
    
    
       u8 portnum;
    
    //父端口号
       u8 level; //USB HUB的层数
    unsigned can_submit:1; //URB可被提交标志
    unsigned discon_suspended:1; //暂停时断开标志
    unsigned persist_enabled:1; //USB_PERSIST使能标志
    unsigned have_langid:1; //string_langid存在标志
    unsigned authorized:1;
    unsigned authenticated:1;
    unsigned wusb:1; //无线USB标志
    int string_langid; //字符串语言ID
    
    /* static strings from the device */ //设备的静态字符串
    char *product; //产品名
    char *manufacturer; //厂商名
    char *serial; //产品串号
    struct list_head filelist; //此设备打开的usbfs文件
    #ifdef CONFIG_USB_DEVICE_CLASS
    struct device *usb_classdev; //用户空间访问的为usbfs设备创建的USB类设备
    #endif
    #ifdef CONFIG_USB_DEVICEFS
    struct dentry *usbfs_dentry; //设备的usbfs入口
    #endif
    int maxchild; //(若为HUB)接口数
    struct usb_device *children[USB_MAXCHILDREN];//连接在这个HUB上的子设备
    int pm_usage_cnt; //自动挂起的使用计数
       u32 quirks;
       atomic_t urbnum; //这个设备所提交的URB计数
    unsigned long active_duration; //激活后使用计时
    
    #ifdef CONFIG_PM //电源管理相关
    struct delayed_work autosuspend; //自动挂起的延时
    struct work_struct autoresume; //(中断的)自动唤醒需求
    struct mutex pm_mutex; //PM的互斥锁
    
    unsigned long last_busy; //最后使用的时间
    int autosuspend_delay;
    unsigned long connect_time; //第一次连接的时间
    unsigned auto_pm:1; //自动挂起/唤醒
    unsigned do_remote_wakeup:1; //远程唤醒
    unsigned reset_resume:1; //使用复位替代唤醒
    unsigned autosuspend_disabled:1; //挂起关闭
    unsigned autoresume_disabled:1; //唤醒关闭
    unsigned skip_sys_resume:1; //跳过下个系统唤醒
    #endif
    struct wusb_dev *wusb_dev; //(如果为无线USB)连接到WUSB特定的数据结构
    };

    配置
        一个USB设备可以有多个配置,并可在它们之间转换以改变设备的状态。比如一个设备可以通过下载固件(firmware)的方式改变设备的使用状态(我感觉类似FPGA或CPLD),那么USB设备就要切换配置,来完成这个工作。一个时刻只能有一个配置可以被激活。Linux使用结构 struct usb_host_config 来描述USB配置。我们编写的USB设备驱动通常不需要读写这些结构的任何值。可在内核源码的文件include/linux/usb.h中找到对它们的描述。

    struct usb_host_config {
    struct usb_config_descriptor desc; //配置描述符
    char *string; /* 配置的字符串指针(如果存在) */
    struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; //配置的接口联合描述符链表
    struct usb_interface *interface[USB_MAXINTERFACES]; //接口描述符链表
    struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
    unsigned char *extra; /* 额外的描述符 */
    int extralen;
    };

    接口
    USB端点被绑为接口,USB接口只处理一种USB逻辑连接。一个USB接口代表一个基本功能,每个USB驱动控制一个接口。所以一个物理上的硬件设备可能需要一个以上的驱动程序。这可以在“晕到死 差屁”系统中看出,有时插入一个USB设备后,系统会识别出多个设备,并安装相应多个的驱动。
    USB 接口可以有其他的设置,它是对接口参数的不同选择. 接口的初始化的状态是第一个设置,编号为0。 其他的设置可以以不同方式控制独立的端点。
    USB接口在内核中使用 struct usb_interface 来描述。USB 核心将其传递给USB驱动,并由USB驱动负责后续的控制。

    struct usb_interface {
    struct usb_host_interface *altsetting; /* 包含所有可用于该接口的可选设置的接口结构数组。每个 struct usb_host_interface 包含一套端点配置(即struct usb_host_endpoint结构所定义的端点配置。这些接口结构没有特别的顺序。*/
    struct usb_host_interface *cur_altsetting; /* 指向altsetting内部的指针,表示当前激活的接口配置*/
    unsigned num_altsetting; /* 可选设置的数量*/
    /* If there is an interface association descriptor then it will list the associated interfaces */
    struct usb_interface_assoc_descriptor *intf_assoc;
    int minor; /* 如果绑定到这个接口的 USB 驱动使用 USB 主设备号, 这个变量包含由 USB 核心分配给接口的次设备号. 这只在一个成功的调用 usb_register_dev后才有效。*/
    /*以下的数据在我们写的驱动中基本不用考虑,系统会自动设置*/
    enum usb_interface_condition condition; /* state of binding */
    unsigned is_active:1; /* the interface is not suspended */
    unsigned sysfs_files_created:1; /* the sysfs attributes exist */
    unsigned ep_devs_created:1; /* endpoint "devices" exist */
    unsigned unregistering:1; /* unregistration is in progress */
    unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
    unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
    unsigned needs_binding:1; /* needs delayed unbind/rebind */
    unsigned reset_running:1;
    struct device dev; /* 接口特定的设备信息 */
    struct device *usb_dev;
    int pm_usage_cnt; /* usage counter for autosuspend */
    struct work_struct reset_ws; /* for resets in atomic context */
    };
    struct usb_host_interface {
    struct usb_interface_descriptor desc; //接口描述符
    struct usb_host_endpoint *endpoint; /* 这个接口的所有端点结构体的联合数组*/
    char *string; /* 接口描述字符串 */
    unsigned char *extra; /* 额外的描述符 */
    int extralen;
    };

    端点
    USB 通讯的最基本形式是通过一个称为端点的东西。一个USB端点只能向一个方向传输数据(从主机到设备(称为输出端点)或者从设备到主机(称为输入端点))。端点可被看作一个单向的管道。
    一个 USB 端点有 4 种不同类型, 分别具有不同的数据传送方式:
    控制CONTROL
    控制端点被用来控制对 USB 设备的不同部分访问. 通常用作配置设备、获取设备信息、发送命令到设备或获取设备状态报告。这些端点通常较小。每个 USB 设备都有一个控制端点称为"端点 0", 被 USB 核心用来在插入时配置设备。USB协议保证总有足够的带宽留给控制端点传送数据到设备.
    中断INTERRUPT
    每当 USB 主机向设备请求数据时,中断端点以固定的速率传送小量的数据。此为USB 键盘和鼠标的主要的数据传送方法。它还用以传送数据到 USB 设备来控制设备。通常不用来传送大量数据。USB协议保证总有足够的带宽留给中断端点传送数据到设备.
    批量BULK
    批量端点用以传送大量数据。这些端点常比中断端点大得多. 它们普遍用于不能有任何数据丢失的数据。USB 协议不保证传输在特定时间范围内完成。如果总线上没有足够的空间来发送整个BULK包,它被分为多个包进行传输。这些端点普遍用于打印机、USB Mass Storage和USB网络设备上。
    等时ISOCHRONOUS
    等时端点也批量传送大量数据, 但是这个数据不被保证能送达。这些端点用在可以处理数据丢失的设备中,并且更多依赖于保持持续的数据流。如音频和视频设备等等。
    控制和批量端点用于异步数据传送,而中断和同步端点是周期性的。这意味着这些端点被设置来在固定的时间连续传送数据,USB 核心为它们保留了相应的带宽。
    端点在内核中使用结构 struct usb_host_endpoint 来描述,它所包含的真实端点信息在另一个结构中:struct usb_endpoint_descriptor(端点描述符,包含所有的USB特定数据)。

    struct usb_host_endpoint {
    struct usb_endpoint_descriptor desc; //端点描述符
    struct list_head urb_list; //此端点的URB对列,由USB核心维护
    void *hcpriv;
    struct ep_device *ep_dev; /* For sysfs info */
    unsigned char *extra; /* Extra descriptors */
    int extralen;
    int enabled;
    };
    /*-------------------------------------------------------------------------*/
    /* USB_DT_ENDPOINT: Endpoint descriptor */
    struct usb_endpoint_descriptor {
        __u8 bLength;
        __u8 bDescriptorType;
        __u8 bEndpointAddress; /*这个特定端点的 USB 地址,这个8位数据包含端点的方向,结合位掩码 USB_DIR_OUT 和 USB_DIR_IN 使用, 确定这个端点的数据方向。*/
        __u8 bmAttributes; //这是端点的类型,位掩码如下
        __le16 wMaxPacketSize; /*端点可以一次处理的最大字节数。驱动可以发送比这个值大的数据量到端点, 但是当真正传送到设备时,数据会被分为 wMaxPakcetSize 大小的块。对于高速设备, 通过使用高位部分几个额外位,可用来支持端点的高带宽模式。*/
        __u8 bInterval; //如果端点是中断类型,该值是端点的间隔设置,即端点的中断请求间的间隔时间,以毫秒为单位
    /* NOTE: these two are _only_ in audio endpoints. */
    /* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */
        __u8 bRefresh;
        __u8 bSynchAddress;
    } __attribute__ ((packed));
    #define USB_DT_ENDPOINT_SIZE 7
    #define USB_DT_ENDPOINT_AUDIO_SIZE 9 /* Audio extension */
    /*
     * Endpoints
     */
    #define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress 端点的 USB 地址掩码 */
    #define USB_ENDPOINT_DIR_MASK 0x80 /* in bEndpointAddress 数据方向掩码 */
    
    
    #define USB_DIR_OUT 0 /* to device */
    #define USB_DIR_IN 0x80 /* to host */
    #define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* bmAttributes 的位掩码*/
    #define USB_ENDPOINT_XFER_CONTROL 0
    #define USB_ENDPOINT_XFER_ISOC 1
    #define USB_ENDPOINT_XFER_BULK 2
    #define USB_ENDPOINT_XFER_INT 3
    #define USB_ENDPOINT_MAX_ADJUSTABLE 0x80
    /*-------------------------------------------------------------------------*/

    USB 和 sysfs
    由于单个 USB 物理设备的复杂性,设备在 sysfs 中的表示也非常复杂。物理 USB 设备(通过 struct usb_device 表示)和单个 USB 接口(由 struct usb_interface 表示)都作为单个设备出现在 sysfs 中,这是因为这两个结构都包含一个 struct device结构。以下内容是我的USB鼠标在 sysfs 中的目录树:   

    /sys/devices/pci0000:00/0000:00:1a.0/usb3/3-1 (表示 usb_device 结构)
    .
    |-- 3-1:1.0 (鼠标所对应的usb_interface)
    | |-- 0003:046D:C018.0003
    | | |-- driver -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/../bus/hid/drivers/generic-usb
    | | |-- power
    | | | `-- wakeup
    | | |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/../bus/hid
    | | `-- uevent
    | |-- bAlternateSetting
    | |-- bInterfaceClass
    | |-- bInterfaceNumber
    | |-- bInterfaceProtocol
    | |-- bInterfaceSubClass
    | |-- bNumEndpoints
    | |-- driver -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/bus/usb/drivers/usbhid
    | |-- ep_81 -> usb_endpoint/usbdev3.4_ep81
    | |-- input
    | | `-- input6
    | | |-- capabilities
    | | | |-- abs
    | | | |-- ev
    | | | |-- ff
    | | | |-- key
    | | | |-- led
    | | | |-- msc
    | | | |-- rel
    | | | |-- snd
    | | | `-- sw
    | | |-- device -> http://www.cnblogs.com/../3-1:1.0
    | | |-- event3
    | | | |-- dev
    | | | |-- device -> http://www.cnblogs.com/input6
    | | | |-- power
    | | | | `-- wakeup
    | | | |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/../class/input
    | | | `-- uevent
    | | |-- id
    | | | |-- bustype
    | | | |-- product
    | | | |-- vendor
    | | | `-- version
    | | |-- modalias
    | | |-- mouse1
    | | | |-- dev
    | | | |-- device -> http://www.cnblogs.com/input6
    | | | |-- power
    | | | | `-- wakeup
    | | | |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/../class/input
    | | | `-- uevent
    | | |-- name
    | | |-- phys
    | | |-- power
    | | | `-- wakeup
    | | |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/class/input
    | | |-- uevent
    | | `-- uniq
    | |-- modalias
    | |-- power
    | | `-- wakeup
    | |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/bus/usb
    | |-- supports_autosuspend
    | |-- uevent
    | `-- usb_endpoint
    | `-- usbdev3.4_ep81
    | |-- bEndpointAddress
    | |-- bInterval
    | |-- bLength
    | |-- bmAttributes
    | |-- dev
    | |-- device -> http://www.cnblogs.com/../3-1:1.0
    | |-- direction
    | |-- interval
    | |-- power
    | | `-- wakeup
    | |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/class/usb_endpoint
    | |-- type
    | |-- uevent
    | `-- wMaxPacketSize
    |-- authorized
    |-- bConfigurationValue
    |-- bDeviceClass
    |-- bDeviceProtocol
    |-- bDeviceSubClass
    |-- bMaxPacketSize0
    |-- bMaxPower
    |-- bNumConfigurations
    |-- bNumInterfaces
    |-- bcdDevice
    |-- bmAttributes
    |-- busnum
    |-- configuration
    |-- descriptors
    |-- dev
    |-- devnum
    |-- driver -> http://www.cnblogs.com/http://www.cnblogs.com/../bus/usb/drivers/usb
    |-- ep_00 -> usb_endpoint/usbdev3.4_ep00
    |-- idProduct
    |-- idVendor
    |-- manufacturer
    |-- maxchild
    |-- power
    | |-- active_duration
    | |-- autosuspend
    | |-- connected_duration
    | |-- level
    | |-- persist
    | `-- wakeup
    |-- product
    |-- quirks
    |-- speed
    |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/../bus/usb
    |-- uevent
    |-- urbnum
    |-- usb_endpoint
    | `-- usbdev3.4_ep00
    | |-- bEndpointAddress
    | |-- bInterval
    | |-- bLength
    | |-- bmAttributes
    | |-- dev
    | |-- device -> http://www.cnblogs.com/../3-1
    | |-- direction
    | |-- interval
    | |-- power
    | | `-- wakeup
    | |-- subsystem -> http://www.cnblogs.com/http://www.cnblogs.com/http://www.cnblogs.com/../class/usb_endpoint
    | |-- type
    | |-- uevent
    | `-- wMaxPacketSize
    `-- version
    38 directories, 91 files

    USB sysfs 设备命名方法是: root_hub-hub_port:config.interface
        随着USB集线器层次的增加, 集线器端口号被添加到字符串中紧随着链中之前的集线器端口号。对一个 2 层的树, 设备为: root_hub-hub_port-hub_port:config.interface ,以此类推。

  • 相关阅读:
    java自带线程池
    SQL 语句学习
    Eclipse 运行内存不足情况
    Eclipse的ant调用maven
    Elipse 无法启动问题(转)
    UI自动化测试实战之Select类实战(四)
    WebElement类方法实战(三)
    WebDriver浏览器属性详解(二)
    服务端测试之gRPC协议测试(一)
    服务端测试实战(一)
  • 原文地址:https://www.cnblogs.com/shenhaocn/p/1996947.html
Copyright © 2011-2022 走看看