zoukankan      html  css  js  c++  java
  • hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。

     

    知识点:

    莫比乌斯反演/*12*/

    线性筛求莫比乌斯反演函数:

    void Init()
    {
        memset(vis,0,sizeof(vis));
        mu[1] = 1;
        cnt = 0;
        for(int i=2; i<N; i++)
        {
            if(!vis[i])
            {
                prime[cnt++] = i;
                mu[i] = -1;
            }
            for(int j=0; j<cnt&&i*prime[j]<N; j++)
            {
                vis[i*prime[j]] = 1;
                if(i%prime[j]) mu[i*prime[j]] = -mu[i];
                else
                {
                    mu[i*prime[j]] = 0;
                    break;
                }
            }
        }
    }

     

    题解:

    转化题意就是[1,n/k],[1,m/k]之间互质的数的个数。

     

     

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int N=100000+10;
    int u[N],prime[N];
    bool vis[N];
    
    void init()
    {
        memset(vis,0,sizeof(vis));
        u[1] = 1;
        int cnt = 0;
        for(int i=2; i<N; i++)
        {
            if(!vis[i])
            {
                prime[cnt++] = i;
                u[i] = -1;
            }
            for(int j=0; j<cnt&&i*prime[j]<N; j++)
            {
                vis[i*prime[j]] = 1;
                if(i%prime[j]) u[i*prime[j]] = -u[i];
                else
                {
                    u[i*prime[j]] = 0;
                    break;
                }
            }
        }
    }
    int main()
    {
        init();
        int t;
        cin>>t;
        int a,b,c,d,k;
        for(int kase=1;kase<=t;kase++)
        {
            scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
            if(k==0)
            {
                printf("Case %d: 0
    ",kase);
                continue;
            }
            long long ans=0;
            int ma=max(b,d),mi=min(b,d);
            for(int i=k;i<=mi;i+=k)
            {
                ans+=(long long)u[i/k]*((ma/i)*2-(mi/i)+1)*(mi/i)/2;
            }
            printf("Case %d: %I64d
    ",kase,ans);
        }
        return 0;
    }

     

     

    GCD

    Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Submit Status

    Description

    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
    Yoiu can assume that a = c = 1 in all test cases.

    Input

    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

    Output

    For each test case, print the number of choices. Use the format in the example.

    Sample Input

    2 1 3 1 5 1 1 11014 1 14409 9

    Sample Output

    Case 1: 9 Case 2: 736427

    Hint

    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5). 
  • 相关阅读:
    Python记录_day21 模块
    python记录day_20 多继承
    python记录_day019 类的约束 异常处理 日志
    python记录_day018 md5加密
    python记录_day18 反射 判断函数与方法
    python记录_day17 类与类之间的关系
    python记录_day16 类的成员
    实验0 了解和熟悉操作系统
    IT就业·软件工程之我见
    递归下降分析程序
  • 原文地址:https://www.cnblogs.com/shentr/p/5349736.html
Copyright © 2011-2022 走看看