zoukankan      html  css  js  c++  java
  • 『题解』洛谷P1063 能量项链

    [原文地址](https://xiaohuang888.github.io/2019/02/25/『题解』洛谷P1063 能量项链)

    Problem Portal

    Portal1:Luogu

    Portal2:LibreOJ

    Portal3:Vijos

    Description

    (Mars)星球上,每个(Mars)人都随身佩带着一串能量项链。在项链上有NN颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是(Mars)人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为(m),尾标记为(r),后一颗能量珠的头标记为(r),尾标记为(n),则聚合后释放的能量为(m imes r imes n)(Mars)单位),新产生的珠子的头标记为(m),尾标记为(n)
    需要时,(Mars)人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
    例如:设(N=4)(4)颗珠子的头标记与尾标记依次为((2,3) (3,5) (5,10) (10,2))。我们用记号⊕表示两颗珠子的聚合操作,((j)(k))表示第(j,k)两颗珠子聚合后所释放的能量。则第(4)(1)两颗珠子聚合后释放的能量为:
    ((4)(1)=10 imes 2 imes 3=60)
    这一串项链可以得到最优值的一个聚合顺序所释放的总能量为:
    (((4)(1))(2))(3)=10 imes 2 imes 3+10 imes 3 imes 5+10 imes 5 imes 10=710)

    Input

    第一行是一个正整数(n(4 leq n leq 100)),表示项链上珠子的个数。第二行是(n)个用空格隔开的正整数,所有的数均不超过(1000)。第(i)个数为第(i)颗珠子的头标记((1 leq i leq n)),当(i<n)时,第(i)颗珠子的尾标记应该等于第(i+1)颗珠子的头标记。第(n)颗珠子的尾标记应该等于第(1)颗珠子的头标记。

    至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

    Output

    一个正整数(E(E leq 2.1×10^{9})),为一个最优聚合顺序所释放的总能量。

    Sample Input

    4
    2 3 5 10
    

    Sample Output

    710
    

    Solution

    ( ext{dp[i][j]}​)表示以( ext{a[i]}​)开头( ext{a[j]}​)结尾的能量的最大值,可以推出动态转移方程:(dp[i][j]=max(f[i][j], dp[i][k]+dp[k][j]+a[i] imes a[k] imes a[j]))

    Source

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    
    using namespace std;
    
    const int INF=0x7f7f7f7f, MAXN=205;
    int n, a[MAXN], dp[MAXN][MAXN];
    int main() {
        scanf("%d",&n);
        for (int i=1; i<=n; i++) {
            scanf("%d",&a[i]);
            a[n+i]=a[i];//复制成环
        }
        memset(dp, 0, sizeof(dp));
        for (int len=2; len<=n; len++) {
            for (int i=1; i+len-1<=(n<<1); i++) {
                int j=i+len-1;
                for (int k=i; k<j; k++)//枚举k
                    dp[i][j]=max(dp[i][j], dp[i][k]+dp[k+1][j]+a[i]*a[k+1]*a[j+1]);//动态转移方程
            }
        }
        int Max=-INF;
        for (int i=1; i<=n; i++)
            if (dp[i][i+n-1]>Max) Max=dp[i][i+n-1];//寻找最大的能量值
        printf("%d
    ",Max);
        return 0;
    }
    
  • 相关阅读:
    Python_Day3
    Python_Day2
    动漫推荐3.0 杂谈
    动漫推荐2.0 杂谈
    动漫推荐1.0 剧情向
    西湖十大特产
    一到春天 杭州西湖就美成了一幅画
    机械键盘十大品牌排行榜
    键盘的日常维护及清理
    无线键盘
  • 原文地址:https://www.cnblogs.com/shenxiaohuang/p/10433417.html
Copyright © 2011-2022 走看看