Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
从两个角度来解题:
(1)top bottom (memorization)
class Solution { private: int minimum(vector<vector<int>>& triangle, vector<vector<int>>& dp, int i, int j){
// 1.边界 if (i == triangle.size()-1){ dp[i][j] = triangle[i][j]; return triangle[i][j]; } // 2.如果cached if (dp[i][j] != INT_MAX) return dp[i][j]; // 3.递推公式 dp[i][j] = triangle[i][j] + min({minimum(triangle, dp, i+1, j), minimum(triangle, dp, i+1, j+1)}); return dp[i][j]; } public: int minimumTotal(vector<vector<int>>& triangle) { vector<vector<int>> dp; // 1.记忆数组
//2.记忆数组初始化 dp.resize(triangle.size());//r行 for (int k = 0; k < triangle.size(); k++){ dp[k].resize(triangle.size());//每行为c列 } for (int i=0; i<triangle.size(); i++){ for (int j=0; j<triangle.size(); j++) dp[i][j] = INT_MAX; } //3. solution函数 minimum(triangle, dp, 0, 0); return dp[0][0]; } };
(2) bottom up (tabulation) --- 更加简单直观
class Solution{ public: int minimumTotal(vector<vector<int>>& triangle) { if (triangle.size() == 1) return triangle[0][0]; vector<vector<int>> dp; dp.resize(triangle.size());//r行 for (int k = 0; k < triangle.size(); k++){ dp[k].resize(triangle.size());//每行为c列 } for (int i=triangle.size()-1; i>=0; i--) dp[triangle.size()-1][i] = triangle[triangle.size()-1][i]; for (int i=triangle.size()-2; i>=0; i--){ for (int j=0; j<=i; j++) dp[i][j] = triangle[i][j] + min({dp[i+1][j], dp[i+1][j+1]}); } return dp[0][0]; } };