利用最小堆解决,代码如下:
class Solution(object): def findKthLargest(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ heap=nums[0:k] heapq.heapify(heap) l=len(nums) for i in xrange(k,l): heapq.heappushpop(heap,nums[i]) return heap[0]
另外一个是使用快排的partition的方法(可见剑指offer167页),寻找index为k-1的pivot ,原理是 一次partition之后,pivot左边的数都小于等于pivot,右边的数都大于等于pivot,所以pivot左边加pivot形成index个数组中最小的数。此题可以利用这个,在pivot左边放置大于pivot的数。 如果开始找到的pivot小于k-1, 则从数组的index+1的数字再开始排序,否则取index-1左边的。属于一个devide and conquer的过程,复杂度为n+n/2+n/4+n/8+n/16.....= O(n)。代码如下:
class Solution: # @param k & A a integer and an array # @return ans a integer def kthLargestElement(self, k, A): if len(A) < k: return None start = 0 end = len(A) - 1 index = self.partition(A, start, end) while index != k-1: if index > k-1: end = index - 1 #res处的元素本身确实不合格,可以去除减小问题规模,防止已经是递减序列后,end = res问题规模一直不变陷入死循环 else: start = index + 1 index = self.partition(A, start, end) return A[index] def partition(self, A, start, end ): #larger number is ahead of the pivot while smaller ones are put after pivot. if start > end: return pivot = A[end] large = start - 1 for i in xrange(start, end): if A[i] > pivot: large += 1 if large != i: A[large], A[i] = A[i], A[large] large += 1 if large != end: A[large], A[end] = A[end], A[large] return large
需要注意每次partition时如果pivot的index不等于k-1,则pivot元素本身也不合格,所以可以再缩减问题时使end = index-1,start = index +1。