zoukankan      html  css  js  c++  java
  • Longest Increasing Continuous subsequence II

    Give you an integer matrix (with row size n, column size m),find the longest increasing continuous subsequence in this matrix. (The definition of the longest increasing continuous subsequence here can start at any row or column and go up/down/right/left any direction).

    Given a matrix:

    [
      [1 ,2 ,3 ,4 ,5],
      [16,17,24,23,6],
      [15,18,25,22,7],
      [14,19,20,21,8],
      [13,12,11,10,9]
    ]
    

    return 25

    Lintcode上的一题,这题很有意思,要求是二维矩阵里面连续递增的子序列.连续是在矩阵的四个方向都可以.如示例是在矩阵的外圈绕了一圈.和最长递增子序列类似.我们定义这里的dp状态为dp[i][j]为以i,j为结尾的最长连续递增子序列的长度.

    所以可以得出递推关系:dp[i][j] = max{dp[i-1][j]+1(A[i-i][j]<A[i][j]), dp[i][j-1]+1(A[i][j-1] < A[i][j]), dp[i+1][j]+1(A[i+1][j]<A[i][j]), dp[i][j+1]+1(A[i][j+1]<A[i][j])即在上下左右四个方向上进行递推.

    初始化dp[i][j] = 1, 即当前字符.

    最终状态max(dp[i][j]).既然dp[i][j]定义的是以某个位置结束的最长递增子序列的长度.则矩阵中一共有m*n个元素,则遍历完这些元素就可以.复杂度为O(n^2),这题因为初始化长度就是1,也有可能此处的最长长度就是1,所以用一个dp矩阵同时发挥visited矩阵很困难.需要另外设立一个flag矩阵.

    代码如下:

    class Solution:
        # @param {int[][]} A an integer matrix
        # @return {int}  an integer
        def longestIncreasingContinuousSubsequenceII(self, A):
            if not A or not A[0]:
                return 0
            n = len(A)
            m = len(A[0])
            flag = [[False]*m for i in xrange(n)]
            dp = [[1]*m for i in xrange(n)]
            maxVal = 1
            for i in xrange(n):
                for j in xrange(m):
                    maxVal = max(maxVal, self.search(A, flag, dp, i, j))
            return maxVal
        def search(self, A, flag, dp, x, y):
            if flag[x][y]:
                return dp[x][y]
            dx = [0, 0, -1, 1]
            dy = [1, -1, 0, 0]
            
            for i in xrange(4):
                if 0 <= x + dx[i] < len(A) and 0 <= y+dy[i] < len(A[0]) and A[x][y] > A[x+dx[i]][y+dy[i]]:
                    dp[x][y] = max(dp[x][y], self.search(A, flag, dp, x+dx[i], y+dy[i])+1)
            flag[x][y] = True
            return dp[x][y]
  • 相关阅读:
    Vue自定义组件
    Vuex状态管理总结
    关于状态管理模式
    Vue路由实现页面跳转的两种方式(router-link和JS)
    Vue过渡效果的实现
    Vue中的DOM操作
    SASS 和 LESS 的区别
    Vue计算属性和侦听器
    zabbix 内置变量
    /proc 目录下文件详解
  • 原文地址:https://www.cnblogs.com/sherylwang/p/5616824.html
Copyright © 2011-2022 走看看