zoukankan      html  css  js  c++  java
  • Sliding Window Median

    Given an array of n integer with duplicate number, and a moving window(size k), move the window at each iteration from the start of the array, find the maximum number inside the window at each moving. 

    Example

    For array [1, 2, 7, 7, 8], moving window size k = 3. return [7, 7, 8]

    At first the window is at the start of the array like this 

    [|1, 2, 7| ,7, 8] , return the maximum 7;

    then the window move one step forward.

    [1, |2, 7 ,7|, 8], return the maximum 7;

    then the window move one step forward again.

    [1, 2, |7, 7, 8|], return the maximum 8;

    又是一道sliding window的题目。求中位数,和Find Median from Data Stream非常相似,可以想到用minheap和maxheap来解决是非常好的思路。

    但是和data flow不一样, sliding window除了增还要删除,所以用hashheap来做比较好。

    具体解法就是,把每次窗口的移动分解为一次增加元素,一次删除元素。因为有两个堆,判断在哪个堆中进行删除比较关键。因为题意,我的做法是maxheap总是存储和minheap一样数目或者多1的数字,这样中位数一直是maxheap的堆顶,则每次可以把要删除的元素和中位数比较,大则在minheap里面,小或者等于则在maxheap里删除。实际这种解法在lintcode中超时,但是如果多hashheap多写一个接口函数,contain(now),利用hash表进行检查,这种做法顺利通过,代码如下:

    class Solution:
        """
        @param nums: A list of integers.
        @return: The median of element inside the window at each moving.
        """
        def medianSlidingWindow(self, nums, k):
            if len(nums) < k or not nums:
                return []
            minheap = HashHeap('min')
            maxheap = HashHeap('max')
            for i in xrange(k):
                if i % 2: 
                    maxheap.add(nums[i])
                    minheap.add(maxheap.pop())
                else:
                    minheap.add(nums[i])
                    maxheap.add(minheap.pop())
            median = []
            for i in xrange(k, len(nums)):
                median.append(maxheap.top())
                if minheap.contain(nums[i - k]):
                    minheap.delete(nums[i - k])
                    maxheap.add(nums[i])
                    minheap.add(maxheap.pop())
                else:
                    maxheap.delete(nums[i - k])
                    minheap.add(nums[i])
                    maxheap.add(minheap.pop())
            median.append(maxheap.top())
            return median
    
    
    class Node(object):
        """
        the type of class stored in the hashmap, in case there are many same heights
        in the heap, maintain the number
        """
        def __init__(self, id, num):
            self.id = id #id means its id in heap array
            self.num = num #number of same value in this id
            
    class HashHeap(object):
        def __init__(self, mode):
            self.heap = []
            self.mode = mode
            self.size = 0
            self.hash = {}
        def top(self):
            return self.heap[0] if len(self.heap) > 0 else 0
            
        def contain(self, now):
            if self.hash.get(now):
                return True
            else:
                return False
            
        def isempty(self):
            return len(self.heap) == 0
            
        def _comparesmall(self, a, b): #compare function in different mode
            if a <= b:
                if self.mode == 'min':
                    return True
                else:
                    return False
            else:
                if self.mode == 'min':
                    return False
                else:
                    return True
        def _swap(self, idA, idB): #swap two values in heap, we also need to change
            valA = self.heap[idA]
            valB = self.heap[idB]
            
            numA = self.hash[valA].num
            numB = self.hash[valB].num
            self.hash[valB] = Node(idA, numB)
            self.hash[valA] = Node(idB, numA)
            self.heap[idA], self.heap[idB] = self.heap[idB], self.heap[idA]
        
        def add(self, now):  #the key, height in this place
            self.size += 1
            if self.hash.get(now):
                hashnow = self.hash[now]
                self.hash[now] = Node(hashnow.id, hashnow.num + 1)
            else:
                self.heap.append(now)
                self.hash[now] = Node(len(self.heap) - 1,1)
                self._siftup(len(self.heap) - 1)
                
        def pop(self):  #pop the top of heap
            self.size -= 1
            now = self.heap[0]
            hashnow = self.hash[now]
            num = hashnow.num
            if num == 1:
                self._swap(0, len(self.heap) - 1)
                self.hash.pop(now)
                self.heap.pop()
                self._siftdown(0)
            else:
                self.hash[now] = Node(0, num - 1)
            return now
            
        def delete(self, now):
            self.size -= 1
            hashnow = self.hash[now]
            id = hashnow.id
            num = hashnow.num
            if num == 1:
                self._swap(id, len(self.heap)-1) #like the common delete operation
                self.hash.pop(now)
                self.heap.pop()
                if len(self.heap) > id:
                    self._siftup(id)
                    self._siftdown(id)
            else:
                self.hash[now] = Node(id, num - 1)
                
        def parent(self, id):
          if id == 0:
            return -1
    
          return (id - 1) / 2
    
        def _siftup(self,id):
            while abs(id -1)/2 < id :  #iterative version
                parentId = (id - 1)/2 
                if self._comparesmall(self.heap[parentId],self.heap[id]):
                    break
                else:
                    self._swap(id, parentId)
                id = parentId
                    
        def _siftdown(self, id): #iterative version
            while 2*id + 1 < len(self.heap):
                l = 2*id + 1
                r = l + 1
                small = id
                if self._comparesmall(self.heap[l], self.heap[id]):
                    small = l
                if r < len(self.heap) and self._comparesmall(self.heap[r], self.heap[small]):
                    small = r
                if small != id:
                    self._swap(id, small)
                else:
                    break
                id = small   

    上述做法时间复杂度为O(nlogk)。但是这题需要求中位数,没有特别好的方法像Sliding Window Maximum这样找到O(n)的解法。就酱

  • 相关阅读:
    silo 主机 报找不到 grain 实现错误的一个注意
    转:CRT注册
    Maven生命周期
    Maven学习笔记
    Java内存回收机制
    Selenium2.0和1.0的区别
    关于使用Selenium RC无法打开指定页面问题
    四儿子购买手册
    Objective-C 宏定义的收集
    设计模式:适配器模式
  • 原文地址:https://www.cnblogs.com/sherylwang/p/5655569.html
Copyright © 2011-2022 走看看