zoukankan      html  css  js  c++  java
  • 2018-4-25个人征信

    业务梳理

    逻辑回归的数理原理

    • 应用场景

      • 逻辑回归被广泛应用在目标变量是二值变量的场合(0,1)
    • 公式

    • 模型估计

      • 极大似然估计
    • 模型阐释/评估

      • 一个解释变量的阐释图
      • C值/AUC,Lift图

    得到每个用户的违约概率(信用评分)

    目标变量:用户的违约概率

    数据清洗

    初始数据整理

    关联相关表

    使用mysql将导入txt数据并且进行合并。

    压缩数据

    bank_detail 和 bill_detail 和 用户浏览行为表 不能直接进行关联,目前的想法,将这两张表的信息分别压缩到每个 user_id 上。

    bank_detail 每个用户的信息压缩为:工资收入、工资外收入、净资产

    use test;
    -- -----------------------------------------------------
    -- Table `user_info`
    -- -----------------------------------------------------
    CREATE TABLE IF NOT EXISTS `user_info` (
      `user_id` INT NOT NULL,
      `sex` INT NULL,
      `jobs` INT NULL,
      `edu_status` INT NULL,
      `marry_status` INT NULL,
      `residence` INT NULL)
    ENGINE = InnoDB;
    
    
    -- -----------------------------------------------------
    -- Table `bank_detail`
    -- -----------------------------------------------------
    CREATE TABLE IF NOT EXISTS `bank_detail` (
      `user_id` INT NOT NULL,
      `timestemp` VARCHAR(45) NULL,
      `trade_type` INT NULL,
      `trade_amount` decimal(30,8) NULL,
      `in_come` INT NULL)
    ENGINE = InnoDB;
    
    
    -- -----------------------------------------------------
    -- Table `browse_history`
    -- -----------------------------------------------------
    CREATE TABLE IF NOT EXISTS `browse_history` (
      `user_id` INT NOT NULL,
      `timestemp` VARCHAR(45) NULL,
      `browsing_behavior_data` INT NULL,
      `browsing_behavior_number` INT NULL,
      `seg` INT NULL)
    ENGINE = InnoDB;
    
    
    -- -----------------------------------------------------
    -- Table `bill_detail`
    -- -----------------------------------------------------
    CREATE TABLE IF NOT EXISTS `bill_detail` (
      `user_id` INT NOT NULL,
      `bill_timestemp` VARCHAR(45) NULL,
      `bank_id` INT NULL,
      `pre_bill_amount` DECIMAL(30,6) NULL,
      `pre_repayment_amount` DECIMAL(30,6) NULL,
      `credit_limit` DECIMAL(30,6) NULL,
      `curr_bill_balance` DECIMAL(30,6) NULL,
      `curr_min_repayment` DECIMAL(30,6) NULL,
      `num_of_consumption` INT NULL,
      `curr_bill_amount` DECIMAL(30,6) NULL,
      `adj_amount` DECIMAL(30,6) NULL,
      `cycle_interest` DECIMAL(30,6) NULL,
      `available_balance` DECIMAL(30,6) NULL,
      `cash_in_advance` DECIMAL(30,6) NULL,
      `repayment_status` DECIMAL(30,6) NULL)
    ENGINE = InnoDB;
    
    
    -- -----------------------------------------------------
    -- Table `loan_time`
    -- -----------------------------------------------------
    CREATE TABLE IF NOT EXISTS `loan_time` (
      `user_id` INT NOT NULL,
      `loan_time` VARCHAR(45) NULL)
    ENGINE = InnoDB;
    
    
    -- -----------------------------------------------------
    -- Table `overdue`
    -- -----------------------------------------------------
    CREATE TABLE IF NOT EXISTS `overdue` (
      `user_id` INT NOT NULL,
      `overdue_label` INT NULL)
    ENGINE = InnoDB;
    
    ####将txt文件导入数据库中####
    use test
    
    load data infile "C:\ProgramData\MySQL\MySQL Server 5.7\Uploads\bank_detail_train.txt" 
    into table bank_detail
      fields terminated by ',';
    select count(*) from bank_detail;
    
    load data infile "C:\ProgramData\MySQL\MySQL Server 5.7\Uploads\bill_detail_train.txt" 
    into table bill_detail
      fields terminated by ',';
    select count(*) from bill_detail;
    
    
    load data infile "C:\ProgramData\MySQL\MySQL Server 5.7\Uploads\browse_history_train.txt" 
    into table browse_history
      fields terminated by ',';
    select count(*) from browse_history;
    
    load data infile "C:\ProgramData\MySQL\MySQL Server 5.7\Uploads\loan_time_train.txt" 
    into table loan_time
      fields terminated by ',';
    select * from loan_time;
    
    load data infile "C:\ProgramData\MySQL\MySQL Server 5.7\Uploads\overdue_train.txt" 
    into table overdue
      fields terminated by ',';
    select * from overdue;
    
    load data infile "C:\ProgramData\MySQL\MySQL Server 5.7\Uploads\user_info_train.txt" 
    into table user_info
      fields terminated by ',';
    select * from user_info;
    

    时间戳无法在mysql中最大为2030年,数据中的时间戳超过了这个时间范围。可以在r中将时间戳转换。

    as.POSIXct(5894316387, origin = "1960-01-01", tz = "GMT")  
    
    use test;
    
    
    ##各表数据量
    select count(1) from bank_detail;
    #6070197
    select count(1) from bill_detail;
    #2338118
    #select count(1) from browse_history;
    #22919547
    select count(1) from loan_time;
    #55596
    select count(1) from overdue;
    #55596
    select count(1) from user_info;
    #55596
    
    ## 压缩bank_detail的信息
    select *
    from bank_detail t
    where user_id = 29165;
    
    

    信息汇总

    我们的目标是将所有的信息汇总到每一个用户,定义关于用户的衍生变量。
    我们发现,bank_detail 表中的user_id数据比其它表的user_id少84%;大概只有9k多条。我们认为bank_detail是与最终目标变量相关性很高的数据,所以我们将这部分数据拿出来,单独做一次分析。

    数据清洗的语句如下:

    use test;
    
    
    ##各表数据量
    select count(1) from bank_detail;
    #6070197
    select count(1) from bill_detail;
    #2338118
    select count(1) from browse_history;
    #22919547
    select count(1) from loan_time;
    #55596
    select count(1) from overdue;
    #55596
    select count(1) from user_info;
    #55596
    
    ## 压缩bank_detail的信息
    drop table if exists temp_1;
    create table temp_1
    select t.*,IF(trade_type=1,-1*trade_amount,trade_amount) as is_inout
    from bank_detail t;
    #where user_id = 29165;
    
    drop table if exists v_bank_detail;
    create table v_bank_detail
    select user_id,sum(in_come*trade_amount) wage_income,sum((-trade_type+1)*trade_amount)-sum(in_come*trade_amount) exwage_income,
    sum(is_inout) property
    from temp_1
    #where user_id = 6965
    group by user_id;
    
    ## 压缩browse_history的信息
    drop table if exists v_browse_history;
    create table v_browse_history
    select user_id,count(1) browse_count
    from browse_history
    group by user_id;
    
    /*
    drop table temp_22;
    create table temp_22
    select user_id,
    if(browsing_behavior_number = 1,num,0) num1,
    if(browsing_behavior_number = 2,num,0) num2,
    if(browsing_behavior_number = 3,num,0) num3,
    if(browsing_behavior_number = 4,num,0) num4,
    if(browsing_behavior_number = 5,num,0) num5,
    if(browsing_behavior_number = 6,num,0) num6,
    if(browsing_behavior_number = 7,num,0) num7,
    if(browsing_behavior_number = 8,num,0) num8,
    if(browsing_behavior_number = 9,num,0) num9,
    if(browsing_behavior_number = 10,num,0) num10,
    if(browsing_behavior_number = 11,num,0) num11
    from temp_2;
    drop table browse_history_temp2;
    create table browse_history_temp2
    select user_id,
    count(1) browse_count
    from temp_22
    group by user_id;
    */
    
    SET GLOBAL innodb_buffer_pool_size=67108864;
    #压缩bill_detail表的信息到user_id上。
    drop table if exists v_bill_detail;
    create table v_bill_detail
    select user_id,
    count(distinct(bank_id)) count_bank,
    sum(pre_bill_amount)-sum(pre_repayment_amount)     pre_not_repay,
    sum(credit_limit)     sum_credit_limit,
    sum(curr_bill_balance)     sum_curr_bill_balance,
    sum(curr_min_repayment)     sum_curr_min_repayment,
    sum(num_of_consumption)     sum_num_of_consumption,
    sum(curr_bill_amount)     sum_curr_bill_amount,
    sum(adj_amount)     sum_adj_amount,
    sum(cycle_interest)     sum_cycle_interest,
    sum(available_balance)     sum_available_balance,
    sum(cash_in_advance)     sum_cash_in_advance,
    count(*)-sum(repayment_status) repay_num,
    sum(repayment_status) not_repay_num
    from bill_detail 
    group by user_id;
    
    ##建立索引 
    create index idx_1 on v_bank_detail (user_id);
    create index idx_2 on v_browse_history(user_id);
    create index idx_3 on v_bill_detail(user_id);
    create index idx_4 on user_info(user_id);
    create index idx_5 on loan_time(user_id);
    create index idx_6 on overdue(user_id);
    
    
    # 关联各表,得到一张宽表。
    #因为bank_detail表中的数据明显太少,只有总数据的16%。因此我们决定单独拿出来进行分析。
    
    drop table if exists finall_1;
    create table finall_1
    select 
    t1.* ,
    t2.loan_time loan_time ,
    t3.overdue_label overdue_label ,
    t4.browse_count browse_count ,
     t.wage_income wage_income ,
     t.exwage_income exwage_income ,
     t.property property ,
    t5.count_bank count_bank ,
    t5.pre_not_repay pre_not_repay ,
    t5.sum_credit_limit sum_credit_limit ,
    t5.sum_curr_bill_balance sum_curr_bill_balance ,
    t5.sum_curr_min_repayment sum_curr_min_repayment ,
    t5.sum_num_of_consumption sum_num_of_consumption ,
    t5.sum_curr_bill_amount sum_curr_bill_amount ,
    t5.sum_adj_amount sum_adj_amount ,
    t5.sum_cycle_interest sum_cycle_interest ,
    t5.sum_available_balance sum_available_balance ,
    t5.sum_cash_in_advance sum_cash_in_advance ,
    t5.repay_num repay_num ,
    t5.not_repay_num not_repay_num
    from v_bank_detail t 
    inner  join user_info t1 on t.user_id = t1.user_id
    inner join loan_time t2 on t.user_id = t2.user_id
    inner join overdue t3 on t.user_id = t3.user_id
    inner join v_browse_history t4 on t.user_id = t4.user_id
    inner join v_bill_detail t5 on t.user_id=t5.user_id;
    
    #第一部分有bank_detail 的6k多条数据在finall_1中。
    select count(*) from finall_1;
    #导出到csv文件中。
    
    select 
    	*
    from finall_2
    #order by user_id asc
    
    into outfile 'C:\ProgramData\MySQL\MySQL Server 5.7\Uploads\finall_bank.csv' 
    
    FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
    LINES TERMINATED BY '
    ';
        
    
    

    将这部分数据导入R中:

    y<-read.csv("C:/Users/CDAer/Desktop/个人征信预测/finall_bank.csv",header=FALSE,sep=",")
    colnames(y1)<-c('user_id',
             'count_bank',
             'sum_pre_bill_amount',
             'sum_pre_repayment_amount',
             'sum_credit_limit',
             'sum_curr_bill_balance',
             'sum_curr_min_repayment',
             'sum_num_of_consumption',
             'sum_curr_bill_amount',
             'sum_adj_amount',
             'sum_cycle_interest',
             'sum_available_balance',
             'sum_cash_in_advance',
             'repay_num',
             'not_repay_num',
             'num1',
             'num2',
             'num3',
             'num4',
             'num5',
             'num6',
             'num7',
             'num8',
             'num9',
             'num10',
             'num11',
             'wage_income',
             'exwage_income',
             'property',
             'edu_status',
             'jobs',
             'marry_status',
             'residence',
             'sex',
             'loan_time',
             'overdue_label')
    #导入的数据多了偶数行,重新取应用数据放入y1 中。
    p<-seq(from=1,to=nrow(y),by=2)
    p
    y1<-y[p,]
    

    缺失信息处理

    上限/下限

    筛选变量

    建立模型

    ###1.数据处理####
    rm(list = ls())
    y<-read.csv("C:/Users/Guang/Desktop/work/finall_bank.csv",header=FALSE,sep=",",stringsAsFactors = F)
    nrow(y)
    table(y[!is.na(y)])
    View(y[1])
    class(y)
    
    y$V9<-as.integer(y$V9)
    y$V10<-as.numeric(y$V10)
    y$V11<-as.numeric(y$V11)
    y$V12<-as.numeric(y$V12)
    y$V13<-as.numeric(y$V13)
    
    
    y$V27<-as.integer(y$V27)
    y$V28<-as.integer(y$V28)
    y$V29<-as.integer(y$V29)
    y$V30<-as.integer(y$V30)
    y$V31<-as.integer(y$V31)
    y$V32<-as.integer(y$V32)
    y$V33<-as.integer(y$V33)
    y$V34<-as.integer(y$V34)
    y$V35<-as.integer(y$V35)
    y$V36<-as.integer(y$V36)
    y$V37<-as.integer(y$V37)
    #将0为缺失值的化为缺失值
    y<-y[1:53174,]
    y$sex<-ifelse(y$sex==0,NA,y$sex)
    y$loan_time<-ifelse(y$loan_time==0,NA,y$loan_time)
    
    #变量名
    
    colnames(y)<-c("user_id",
                   "sex",
                   "jobs",
                   "edu_status",
                   "marry_status",
                   "residence",
                   "loan_time",
                   "overdue_label",
                   "wage_income",
                   "exwage_income",
                   "property",
                   "income",
                   "outcome",
                   "count_bank",
                   "pre_not_repay",
                   "sum_credit_limit",
                   "sum_curr_bill_balance",
                   "sum_curr_min_repayment",
                   "sum_num_of_consumption",
                   "sum_curr_bill_amount",
                   "sum_adj_amount",
                   "sum_cycle_interest",
                   "sum_available_balance",
                   "sum_cash_in_advance",
                   "repay_num",
                   "not_repay_num",
                   "browse_num1",
                   "browse_num2",
                   "browse_num3",
                   "browse_num4",
                   "browse_num5",
                   "browse_num6",
                   "browse_num7",
                   "browse_num8",
                   "browse_num9",
                   "browse_num10",
                   "browse_num11"
    )
    
    #处理时间戳
    y$loan_time<-as.POSIXct(y$loan_time, origin = "1960-01-01", tz = "GMT") 
    #查看时间,按照月份做违约数量图
    #library(plyr)
    #library(lubridate)
    #y$month<-month(y$loan_time)
    #day_plot<-ddply(y,.(month),summarise,yyy=sum(overdue_label),yyyn=length(user_id))
    #day_plot
    #plot(day_plot$month,day_plot$yyy/day_plot$yyyn,type="b")
    ###填充sex和browse_count
    
    b<- which(y$sex==0)
    set.seed(2)
    a<-sample(length(which(y$sex==0)),round(length(y[y$sex==0,"sex"])*0.8))
    a2<-(1:length(which(y$sex==0)))[!(1:length(which(y$sex==0)) %in% a)]
    
    b[a]
    y[b[a],"sex"]<-1
    
    b[a2]
    y[b[a2],"sex"]<-2
    y[is.na(y$sex),"sex"]<-1
    
    
    #y[is.na(y$browse_count),"browse_count"]<-294
    
    ##填充browse——num的缺失值
    browse<-c(
      "browse_num1",
      "browse_num2",
      "browse_num3",
      "browse_num4",
      "browse_num5",
      "browse_num6",
      "browse_num7",
      "browse_num8",
      "browse_num9",
      "browse_num10",
      "browse_num11"
    )
    for(i in browse){
      y[is.na(y[,i]),i]<-median(y[,i],na.rm = T)
    }
    
    train<-y
    ###### 2 分割训练集和验证集 ####
    table(train$overdue_label)
    table(test$overdue_label)
    
    set.seed(1)
    a<-sample(nrow(y),round(nrow(y)*0.7))
    y[!((1:nrow(y)) %in% a),]
    train<-y[a,]
    test<-y[!((1:nrow(y)) %in% a),]####
    
    
    ##### 3. profiles图 #############################################################################################
    # overall performance
    overall_cnt=nrow(train)   #calculate the total count
    overall_resp=sum(train$overdue_label,na.rm = T)  #calculate the total responders count
    overall_resp_rate=overall_resp/overall_cnt  #calculate the response rate
    overall_perf<-c(overall_count=overall_cnt,overall_responders=overall_resp,overall_response_rate=overall_resp_rate) #combine
    View(t(overall_perf))  #take a look at the summary
    
    library(plyr)              #call plyr
    #分类型变量
    "sex"
    "jobs" 
    "edu_status" 
    [5] "marry_status"          
    [6] "residence"   
    "month"
    prof<-ddply(train,.(sex),summarise,cnt=length(user_id),res=sum(overdue_label)) #group by sex
    #View(prof)  #check the result
    prof
    prof1<-within(prof,
                  {var1="sex"
                  sex
                  percent<-cnt/overall_cnt
                  res_rate<-res/cnt 
                  index<-res_rate/overall_resp_rate*100
                  })  #add response_rate,index, percentage
    View(prof1)
    
    
    ##连续型
    [8] "overdue_label"         
    [9] "browse_count"          
    [10] "wage_income"           
    [11] "exwage_income"         
    [12] "property"              
    [13] "count_bank"            
    [14] "pre_not_repay"         
    [15] "sum_credit_limit"      
    [16] "sum_curr_bill_balance" 
    [17] "sum_curr_min_repayment"
    [18] "sum_num_of_consumption"
    [19] "sum_curr_bill_amount"  
    [20] "sum_adj_amount"        
    [21] "sum_cycle_interest"    
    [22] "sum_available_balance" 
    [23] "sum_cash_in_advance"   
    [24] "repay_num"             
    [25] "not_repay_num"
    
    table(train$browse_count)
    nrow(train)
    #separate to 2 parts: missing,nomissing
    
    table(is.na(train$overdue_label))
    nomissing<-data.frame(var_data[!is.na(train$browse_count),])  #select the no missing value records 
    missing<-data.frame(var_data[is.na(train$browse_count),])  
    
    
    ##numeric Profiling:missing part 
    missing2<-ddply(missing,.(browse_count),summarise,cnt=length(overdue_label),res=sum(overdue_label)) #group by em_months_last_open
    #View(missing2)  
    missing_perf<-within(missing2,{res_rate<-res/cnt 
    index<-res_rate/overall_resp_rate*100
    percent<-cnt/overall_cnt
    var_category<-c('unknown')
    })   #summary
    View(missing_perf)
    
    ##numeric Profiling:Non-missing part
    nomissing_value<-train[!is.na(train$browse_count),"browse_count"]
    nomissing$var_category<-cut(nomissing_value,unique(quantile(nomissing_value,(0:10)/10)),include.lowest = F)#separte into 10 groups
    View(table(nomissing$var_category))  #take a look at the 10 category
    prof2<-ddply(nomissing,.(var_category),summarise,cnt=length(overdue_label),res=sum(overdue_label)) #group by the 10 groups
    #View(prof2)
    nonmissing_perf<-within(prof2,
                            {res_rate<-res/cnt 
                            index<-res_rate/overall_resp_rate*100
                            percent<-cnt/overall_cnt
                            })  #add resp_rate,index,percent
    View(nonmissing_perf)
    
    all_perf<-rbind(nonmissing_perf,missing_perf[,-1]) #set 2 data together
    View(all_perf)
    
    ############################################################  4: Means  #############################################################
    train<-y
    c_name <- colnames(train)
    for(i in c_name){
      mean_var1<-train[,i]
      mean1<-c(
        var=i,
        mean=mean(mean_var1,na.rm=T),
        median=median(mean_var1,na.rm=T),
        quantile(mean_var1,c(0,0.01,0.1,0.25,0.5,0.75,0.9,0.99,1),na.rm=T),
        nmiss=sum(is.na(mean_var1))
      )
      all_mean<-rbind(all_mean,t(mean1)) #set 2 data together
    }
    #需要给all_mean 一个初始值 然后再跑一次循环。
    all_mean<-mean1  
    
    for(i in c_name){
      mean_var1<-train[,i]
      mean1<-c(
        var=i,
        mean=mean(mean_var1,na.rm=T),
        median=median(mean_var1,na.rm=T),
        quantile(mean_var1,c(0,0.01,0.1,0.25,0.5,0.75,0.9,0.99,1),na.rm=T),
        nmiss=sum(is.na(mean_var1))
      )
      all_mean<-rbind(all_mean,t(mean1)) #set 2 data together
    }
    View(all_mean)
    
    
    ### 5消除极值点######
    #消除极值点
    a<-c(#"browse_count",
      "property",
      "pre_not_repay",
      "sum_credit_limit",
      "sum_curr_bill_balance",
      "sum_curr_min_repayment",
      "sum_num_of_consumption",
      "sum_curr_bill_amount",
      "sum_adj_amount",
      "sum_cycle_interest",
      "sum_available_balance",
      "sum_cash_in_advance",
      "repay_num",
      "browse_num1",
      "browse_num2",
      "browse_num3",
      "browse_num4",
      "browse_num5",
      "browse_num6",
      "browse_num7",
      "browse_num8",
      "browse_num9",
      "browse_num10",
      "browse_num11"
    )
    scale(train[,a])
    summary(train[,a])
    quantile(train[,"repay_num"],0.01)
    quantile(train$sum_credit_limit,0.99)
    
    boxplot(scale(train[,a]))
    #### 将异常值处理 
    for(i in a){
      train[,i] <-
        ifelse(train[,i] <= quantile(train[,i],0.01,na.rm = T), quantile(train[,i],0.01,na.rm = T),
               ifelse(train[,i] >=quantile(train[,i],0.99,na.rm = T), quantile(train[,i],0.99,na.rm = T),
                      train[,i]))
    }
    
    ######### 6哑变量转换 #########   
    train_1<-train
    
    train_1$m2_sex<-ifelse(train_1$sex %in% c(2),0,1)
    summary(train_1$m2_sex)
    summary(train_1$sex)
    table(train_1$m2_sex)
    #jobs
    train_1$m2_jobs<-ifelse(train_1$jobs %in% c(0,1,4),1,0)
    
    #edu_status
    train_1$m2_edu_status<-ifelse(train_1$edu_status %in% c(0,4),1,0)
    
    #marry_status
    train_1$m2_marry_status<-ifelse(train_1$marry_status %in% c(0,4,5),1,0)
    
    #residence
    train_1$m2_residence<-ifelse(train_1$residence %in% c(0,2,4),1,0)
    ############7 logistic模型############
    library(ape)
    library(vegan)
    library(permute)
    library(lattice)
    library(nlme)
    library(picante)  #call picante
    # scale
    #标准化-
    train$scale_browse_count<-scale(train$browse_count)
    train$scale_count_bank<-scale(train$count_bank)
    train$scale_pre_not_repay<-scale(train$pre_not_repay)
    train$scale_sum_credit_limit<-scale(train$sum_credit_limit)
    train$scale_sum_curr_bill_balance<-scale(train$sum_curr_bill_balance)
    train$scale_sum_curr_min_repayment<-scale(train$sum_curr_min_repayment)
    train$scale_sum_num_of_consumption<-scale(train$sum_num_of_consumption)
    train$scale_sum_curr_bill_amount<-scale(train$sum_curr_bill_amount)
    train$scale_sum_adj_amount<-scale(train$sum_adj_amount)
    train$scale_sum_cycle_interest<-scale(train$sum_cycle_interest)
    train$scale_sum_available_balance<-scale(train$sum_available_balance)
    train$scale_sum_cash_in_advance<-scale(train$sum_cash_in_advance)
    train$scale_repay_num<-scale(train$repay_num)
    train$scale_not_repay_num<- scale(train$not_repay_num)
    
    var_list1<-c(
      "m2_sex",
      "m2_edu_status",
      "m2_marry_status",
      "wage_income",
      "exwage_income",
      "income",
      "pre_not_repay",
      "sum_curr_bill_balance",
      "sum_num_of_consumption",
      "sum_available_balance",
      "sum_cash_in_advance",
      "repay_num",
      "not_repay_num"
    )
    
    var_list1<-c(
      #"user_id",
      "sex",
      "jobs",
      "edu_status",
      "marry_status",
      "residence",
      #"loan_time",
      #"overdue_label",
      "wage_income",
      "exwage_income",
      "property",
      "income",
      "outcome",
      "count_bank",
      "pre_not_repay",
      "sum_credit_limit",
      "sum_curr_bill_balance",
      "sum_curr_min_repayment",
      "sum_num_of_consumption",
      "sum_curr_bill_amount",
      "sum_adj_amount",
      "sum_cycle_interest",
      "sum_available_balance",
      "sum_cash_in_advance",
      "repay_num",
      "not_repay_num",
      "browse_num1",
      "browse_num2",
      "browse_num3",
      "browse_num4",
      "browse_num5",
      "browse_num6",
      "browse_num7",
      "browse_num8",
      "browse_num9",
      "browse_num10",
      "browse_num11"
    )
    
    #View(train[,var_list1])
    
    
    
    mods<-train[,c('overdue_label',var_list1)]  #select Y and varibales you want to try
    str(mods)
    
    (model_glm<-glm(overdue_label~.,data=mods,family =binomial(link ="logit")))  #logistic model
    #########Stepwise先建模然后跑递归
    
    
    library(MASS)
    model_sel<-stepAIC(model_glm,direction ="both")  #using both backward and forward stepwise selection
    summary<-summary(model_sel)  #summary
    
    model_summary<-data.frame(var=rownames(summary$coefficients),summary$coefficients) #do the model summary
    View(model_summary)
    
    
    #### 8 模型评估 ####
    #预测
    train$predict_1<-predict(model_glm,newdata=train,type="response")
    summary(train$predict_1)
    #train$predict_1<-ifelse(train$predict_1>0.95,1,0)
    library(ROCR)
    library(gplots)
    roc<-prediction(train$predict_1,train$overdue_label)
    cc<-performance(roc,"tpr","fpr")
    plot(cc)
    abline(a=0,b=1)
    performance(roc,"auc")
    #k-s曲线,越接近1越好,小于0.2不可接受
    myks<-function(y,predict_y){
      pred <- prediction(predictions=predict_y,labels=y)
      perf <- performance(pred,"tpr","fpr")
      tmp<-max(attr(perf,"y.values")[[1]]-attr(perf,"x.values")[[1]])
      return(tmp)
    }
    myks(train$overdue_label,train$predict_1)
    
    
    #预测test
    
    test$m2_sex<-ifelse(test$sex %in% c(2),0,1)
    summary(test$m2_sex)
    summary(test$sex)
    table(test$m2_sex)
    #jobs
    test$m2_jobs<-ifelse(test$jobs %in% c(0,1,4),1,0)
    
    #edu_status
    test$m2_edu_status<-ifelse(test$edu_status %in% c(0,4),1,0)
    
    #marry_status
    test$m2_marry_status<-ifelse(test$marry_status %in% c(0,4,5),1,0)
    
    #residence
    test$m2_residence<-ifelse(test$residence %in% c(0,2,4),1,0)
    test$predict_1<-predict(model_glm,newdata=test,type="response")
    summary(test$predict_1)
    #test$predict_1<-ifelse(test$predict_1>0.95,1,0)
    library(ROCR)
    library(gplots)
    roc<-prediction(test$predict_1,test$overdue_label)
    cc<-performance(roc,"tpr","fpr")
    plot(cc)
    abline(a=0,b=1)
    performance(roc,"auc")
    #k-s曲线,越接近1越好,小于0.2不可接受
    myks<-function(y,predict_y){
      pred <- prediction(predictions=predict_y,labels=y)
      perf <- performance(pred,"tpr","fpr")
      tmp<-max(attr(perf,"y.values")[[1]]-attr(perf,"x.values")[[1]])
      return(tmp)
    }
    myks(test$overdue_label,test$predict_1)
    
    
    
    
    #### bank_detail取出单独做   因子化#####
    train_1<-train
    train_1<-train[!(is.na(train$wage_income)),]
    write.csv(train_1,"C:/Users/CDAer/Desktop/train_1.csv")
    
    hist(train$income)
    
    nrow(train_1)
    colnames(train_1)
    
    
    train_1$m1_sex<-as.factor(train_1$sex)
    train_1$m1_jobs<-as.factor(train_1$jobs)
    train_1$m1_edu_status<-as.factor(train_1$edu_status)
    train_1$m1_marry_status<-as.factor(train_1$marry_status)
    train_1$m1_residence<-as.factor(train_1$residence)
    
    
    var_list1<-c(
      #"user_id",
      "m1_sex",
      "m1_jobs",
      "m1_edu_status",
      "m1_marry_status",
      "m1_residence",
      #"loan_time",
      #"overdue_label",
      "pre_not_repay",
      "sum_credit_limit",
      "sum_curr_bill_balance",
      "sum_curr_min_repayment",
      "sum_num_of_consumption",
      "sum_curr_bill_amount",
      "sum_adj_amount",
      "sum_cycle_interest",
      "sum_available_balance",
      "sum_cash_in_advance",
      "repay_num",
      "not_repay_num",
      "browse_num1",
      "browse_num2",
      "browse_num3",
      "browse_num4",
      "browse_num5",
      "browse_num6",
      "browse_num7",
      "browse_num8",
      "browse_num9",
      "browse_num10",
      "browse_num11"
    )
    
    View(train_1[,var_list1])
    
    
    
    mods<-train_1[,c('overdue_label',var_list1)]  #select Y and varibales you want to try
    str(mods)
    
    (model_glm<-glm(overdue_label~.,data=mods,family =binomial(link ="logit")))  #logistic model
    #########Stepwise先建模然后跑递归
    
    
    library(MASS)
    model_sel<-stepAIC(model_glm,direction ="both")  #using both backward and forward stepwise selection
    summary<-summary(model_sel)  #summary
    
    model_summary<-data.frame(var=rownames(summary$coefficients),summary$coefficients) #do the model summary
    View(model_summary)
    
    #### 8 模型评估 ####
    
    var_list<-c(
      "m2_sex",
      "m2_jobs",
      "m2_edu_status",
      "m2_marry_status",
      "exwage_income",
      "income",
      "pre_not_repay",
      "sum_credit_limit",
      "sum_curr_bill_balance",
      "sum_num_of_consumption",
      "sum_cycle_interest",
      "sum_available_balance",
      "sum_cash_in_advance",
      "browse_num3",
      "browse_num6",
      "browse_num11"
    )
    
    mods<-train_1[,c('overdue_label',var_list)]  #select Y and varibales you want to try
    str(mods)
    
    (model_glm<-glm(overdue_label~.,data=mods,family =binomial(link ="logit")))  #logistic model
    #预测
    train_1$predict_1<-predict(model_glm,newdata=train_1,type="response")
    summary(train_1$predict_1)
    #train$predict_1<-ifelse(train$predict_1>0.95,1,0)
    library(ROCR)
    library(gplots)
    roc<-prediction(train_1$predict_1,train_1$overdue_label)
    cc<-performance(roc,"tpr","fpr")
    plot(cc)
    abline(a=0,b=1)
    performance(roc,"auc")
    #k-s曲线,越接近1越好,小于0.2不可接受
    myks<-function(y,predict_y){
      pred <- prediction(predictions=predict_y,labels=y)
      perf <- performance(pred,"tpr","fpr")
      tmp<-max(attr(perf,"y.values")[[1]]-attr(perf,"x.values")[[1]])
      return(tmp)
    }
    myks(train_1$overdue_label,train_1$predict_1)
    
    
    

    模型评估

  • 相关阅读:
    【拆点费用流】【HDU1853】【 Cyclic Tour】
    【最小费用最大流】【HDU1533】【Going Home】
    【最大流,二分图匹配】【hdu2063】【过山车】
    【最小费用最大流模板】【Uva10806+Spring Team PK】Dijkstra, Dijkstra,
    【最大流之sap】【HDU1532】模板题
    HDU 6130 Kolakoski 思维个屁 水题
    Codeforces 837 D Round Subset DP 思维
    Educational Codeforces Round 26
    Codeforces Round 427 B The name on the board 水题
    Codeforces Round 428 B Game of the rows 贪心 思维
  • 原文地址:https://www.cnblogs.com/shgwater/p/9089032.html
Copyright © 2011-2022 走看看