zoukankan      html  css  js  c++  java
  • zipkin微服务调用链分析

    1.zipkin的作用
    在微服务架构下,一个http请求从发出到响应,中间可能经过了N多服务的调用,或者N多逻辑操作,
    如何监控某个服务,或者某个逻辑操作的执行情况,对分析耗时操作,性能瓶颈具有很大价值,
    zipkin帮助我们实现了这一监控功能。

    2.启动zipkin
    下载可执行文件: https://zipkin.io/quickstart.sh | bash -s

    java -jar zipkin.jar
    

    运行结果:

    zipkin监听9411端口,通过浏览器查看:

    3.python中zipkin的实现模块py_zipkin
    创建flask项目,新建demo.py

    import requests
    from flask import Flask
    from py_zipkin.zipkin import zipkin_span,create_http_headers_for_new_span
    import time
    
    app = Flask(__name__)
    
    app.config.update({
        "ZIPKIN_HOST":"127.0.0.1",
        "ZIPKIN_PORT":"9411",
        "APP_PORT":5000,
        # any other app config-y things
    })
    
    
    def do_stuff():
        time.sleep(2)
        headers = create_http_headers_for_new_span()
        requests.get('http://localhost:6000/service1/', headers=headers)
        return 'OK'
    
    
    def http_transport(encoded_span):
        # encoding prefix explained in https://github.com/Yelp/py_zipkin#transport
        #body = b"x0cx00x00x00x01"+encoded_span
        body=encoded_span
        zipkin_url="http://127.0.0.1:9411/api/v1/spans"
        #zipkin_url = "http://{host}:{port}/api/v1/spans".format(
         #   host=app.config["ZIPKIN_HOST"], port=app.config["ZIPKIN_PORT"])
        headers = {"Content-Type": "application/x-thrift"}
    
        # You'd probably want to wrap this in a try/except in case POSTing fails
        r=requests.post(zipkin_url, data=body, headers=headers)
        print(type(encoded_span))
        print(encoded_span)
        print(body)
        print(r)
        print(r.content)
    
    
    @app.route('/')
    def index():
        with zipkin_span(
            service_name='webapp',
            span_name='index',
            transport_handler=http_transport,
            port=5000,
            sample_rate=100, #0.05, # Value between 0.0 and 100.0
        ):
            with zipkin_span(service_name='webapp', span_name='do_stuff'):
                do_stuff()
            time.sleep(1)
        return 'OK', 200
    
    if __name__=='__main__':
        app.run(host="0.0.0.0",port=5000,debug=True)
    

    新建server1.py

    from flask import request
    import requests
    from flask import Flask
    from py_zipkin.zipkin import zipkin_span,ZipkinAttrs
    import time
    
    import MySQLdb
    
    app = Flask(__name__)
    app.config.update({
        "ZIPKIN_HOST":"127.0.0.1",
        "ZIPKIN_PORT":"9411",
        "APP_PORT":5000,
        # any other app config-y things
    })
    
    
    def do_stuff():
        time.sleep(2)
        with zipkin_span(service_name='service1', span_name='service1_db_search'):
            db_search()
        return 'OK'
    
    
    def db_search():
        # 打开数据库连接
        db = MySQLdb.connect("127.0.0.1", "username", "psw", "db", charset='utf8')
        # 使用cursor()方法获取操作游标
        cursor = db.cursor()
        # 使用execute方法执行SQL语句
        cursor.execute("SELECT VERSION()")
        # 使用 fetchone() 方法获取一条数据
        data = cursor.fetchone()
        print("Database version : %s " % data)
        # 关闭数据库连接
        db.close()
    
    def http_transport(encoded_span):
        # encoding prefix explained in https://github.com/Yelp/py_zipkin#transport
        #body = b"x0cx00x00x00x01" + encoded_span
        body=encoded_span
        zipkin_url="http://127.0.0.1:9411/api/v1/spans"
        #zipkin_url = "http://{host}:{port}/api/v1/spans".format(
        #    host=app.config["ZIPKIN_HOST"], port=app.config["ZIPKIN_PORT"])
        headers = {"Content-Type": "application/x-thrift"}
    
        # You'd probably want to wrap this in a try/except in case POSTing fails
        requests.post(zipkin_url, data=body, headers=headers)
    
    
    @app.route('/service1/')
    def index():
        with zipkin_span(
            service_name='service1',
            zipkin_attrs=ZipkinAttrs(
                trace_id=request.headers['X-B3-TraceID'],
                span_id=request.headers['X-B3-SpanID'],
                parent_span_id=request.headers['X-B3-ParentSpanID'],
                flags=request.headers['X-B3-Flags'],
                is_sampled=request.headers['X-B3-Sampled'],
            ),
            span_name='index_service1',
            transport_handler=http_transport,
            port=6000,
            sample_rate=100, #0.05, # Value between 0.0 and 100.0
        ):
            with zipkin_span(service_name='service1', span_name='service1_do_stuff'):
                do_stuff()
        return 'OK', 200
    
    if __name__=='__main__':
        app.run(host="0.0.0.0",port=6000,debug=True)
    

    运行demo.py

    运行server1.py

    访问5000端口

    查看调用链:

    可以看到,有webapp和services两个service,5个span标签,可以清楚看到service和service,service和span,span和span之间的关系,和各span耗时情况。

    4.py_zipkin代码分析
    上例中我们主要使用了py_zipkin的两个对象,zipkin_span和create_http_headers_for_new_span
    1)zipkin_span

    with zipkin_span(
            service_name='webapp',
            span_name='index',
            transport_handler=http_transport,
            port=5000,
            sample_rate=100, #0.05, # Value between 0.0 and 100.0
        ):
    

    service_name:服务名
    span_name:标签名,用来标志服务里面的某个操作
    transport_handler:处理函数,post数据到zipkin
    port:服务端口号
    sample_rate:待研究

    需要注意的是,在一个服务里面,只有root-span需要定义transport_handler,port等参数,非root-span只有service_name是必须的,其他参数继承root-span

    with zipkin_span(service_name='webapp', span_name='do_stuff'):
        do_stuff()
    

    zip_span还可以是用装饰器的方式,来包裹对应的操作

    @zipkin_span(service_name='webapp', span_name='do_stuff')
    def do_stuff():
        time.sleep(2)
        headers = create_http_headers_for_new_span()
        requests.get('http://localhost:6000/service1/', headers=headers)
        return 'OK'
    

    但是,我这边试了装饰器的方式,不起作用

    transport_handler的定义如下:

    def http_transport(encoded_span):
        # encoding prefix explained in https://github.com/Yelp/py_zipkin#transport
        #body = b"x0cx00x00x00x01"+encoded_span
        body=encoded_span
        zipkin_url="http://127.0.0.1:9411/api/v1/spans"
        #zipkin_url = "http://{host}:{port}/api/v1/spans".format(
         #   host=app.config["ZIPKIN_HOST"], port=app.config["ZIPKIN_PORT"])
        headers = {"Content-Type": "application/x-thrift"}
    
        # You'd probably want to wrap this in a try/except in case POSTing fails
        r=requests.post(zipkin_url, data=body, headers=headers)
    

    zipkin会把编码后的span,通过接口post到zipkin,我们通过浏览器就可以看到调用链详情了。
    2)create_http_headers_for_new_span
    跳到一个新的服务时,通过create_http_headers_for_new_span生成新的span信息,包括trace_id,span_id,parent_span_id等,服务之间就做好关联了

    with zipkin_span(
            service_name='service1',
            zipkin_attrs=ZipkinAttrs(
                trace_id=request.headers['X-B3-TraceID'],
                span_id=request.headers['X-B3-SpanID'],
                parent_span_id=request.headers['X-B3-ParentSpanID'],
                flags=request.headers['X-B3-Flags'],
                is_sampled=request.headers['X-B3-Sampled'],
            ),
            span_name='index_service1',
            transport_handler=http_transport,
            port=6000,
            sample_rate=100, #0.05, # Value between 0.0 and 100.0
        ):
    
  • 相关阅读:
    在R语言中轻松创建关联网络
    在R语言中显示美丽的数据摘要summary统计信息
    R语言中不同类型的聚类方法比较
    R语言中的划分聚类模型
    R语言解释生存分析中危险率和风险率的变化
    Stata估算观测数据的风险比
    Stata 中Mata的st_view函数
    R语言多臂试验
    R语言使用倾向评分提高RCT(随机对照试验)的效率
    R语言在RCT中调整基线时对错误指定的稳健性
  • 原文地址:https://www.cnblogs.com/shijingjing07/p/9340131.html
Copyright © 2011-2022 走看看