zoukankan      html  css  js  c++  java
  • KMP算法学习&总结

    0、缘起

     一直ym传说中的kmp算法能以最坏线性的时间复杂度搞定字符串匹配,

    开始动手看才知道kmp中的K居然是Donald.E.Knuth,《计算机程序设计艺术》的作者。

    好吧,继续ym……

    1、传统的字符串匹配算法

    复制代码
    /* 
     * 从s中第sIndex位置开始匹配p
     * 若匹配成功,返回s中模式串p的起始index
     * 若匹配失败,返回-1
     */
    int index(const std::string &s, const std::string &p, const int sIndex = 0)
    {
        int i = sIndex, j = 0;
    
        if (s.length() < 1 || p.length() < 1 || sIndex < 0)
        {
            return -1;
        }
    
        while (i != s.length() && j != p.length())
        {
            if (s[i] == p[j])
            {
                ++i;
                ++j;
            }
            else
            {
                i = i - j + 1;
                j = 0;
            }
        }
        return j == p.length() ? i - j: -1;
    }
    复制代码

    2、传统字符串匹配算法的性能问题

    用模式串P去匹配字符串S,在i=6,j=4时发生失配:

                                  i=6

    S: a   b   a   b   c   a   d   c   a   c   b   a   b

    P:           a   b   c   a   c

                                  j=4

    此时,按照传统算法,应当将P的第 1 个字符 a(j=0) 滑动到与S中第4个字符 b(i=3) 对齐再进行匹配: 

                     i=3 

    S: a   b   a   b   c   a   a   d   a   c   b   a   b 

    P:               a   b   c   a   c 

                     j=0 

    这个过程中,对字符串S的访问发生了“回朔”(从 i=6 移回到 i=3)。

    我们不希望发生这样的回朔,而是试图通过尽可能的“向右滑动”模式串P,让P中index为 j 的字符对齐到S中 i=5 的字符,然后试图匹配S中 i=6 的字符与P中index为 j+1 的字符。

    在这个测试用例中,我们直接将P向右滑动3个字符,使S中 i=5 的字符与P中 j=0 的字符对齐,再匹配S中 i=6 的字符与P中 j=1 的字符。

                                   i=6

    S: a   b   a   b   c   a   d   c   a   c   b   a   b

    P:                        a   b   c   a   c

                              j=0

    3、kmp算法的一般性讨论

    下面讨论在一般性的情况下,如何实现在“不回朔”访问S、仅依靠“滑动”P的前提下实现字符串匹配,即“kmp算法”

                                   i=6

    S: a   b   a   b   c   a   d   c   a   c   b   a   b

    P:                        a   b   c   a   c

                                  k=1

                                    i=6

    S: a   b   a   b   c   a   d   c   a   c   b   a   b

    P:           a   b   c   a   c

                                   j=4

    对于任意的S和P,当S中index为 i 的字符和P中index为 j 的字符失配时,我们假定应当滑动P使其index为 k 的字符与S中index为 i 的字符“对齐”并继续比较。

    那么,这个 k 是多少?

    我们知道,所谓的对齐,就是要让S和P满足以下条件(上图中的蓝色字符):

    ……(1)

    另一方面,在失配时我们已经有了一些部分匹配结果(上图中的绿色字符):

    ……(2)

    由(1)、(2)可以得到:

    ……(3)

    即如下图所示效果:

    定义next[j]=k,k表示当模式串P中index为 j 的字符与主串S中index为 i 的字符发生失配时,应将P中index为 k 的字符继续与主串S中index为 i 的字符比较。

    ……(4)

    按上述定义给出next数组的一个例子:

       j         0  1  2  3  4  5  6  7

       P        a   b  a  a  b  c  a   c

    next[j]  -1  0  0  1  1  2  0  1

    在已知next数组的前提下,字符串匹配的步骤如下:

    i 和 j 分别表示在主串S和模式串P中当前正待比较的字符的index,i 的初始值为sIndex,j 的初始值为0。

    在匹配过程中的每一次循环,若,i 和 j 分别增 1,

    else,j 退回到 next[j]的位置,此时下一次循环是相比较。

    4、kmp算法的实现

     在已知next函数的前提下,根据上面的步骤,kmp算法的实现如下: 

    复制代码
    int kmp(const std::string& s, const std::string& p, const int sIndex = 0)
    {
        std::vector<int>next(p.size());
        getNext(p, next);//获取next数组,保存到vector中
    
        int i = sIndex, j = 0;
        while(i != s.length() && j != p.length())
        {
            if (j == -1 || s[i] == p[j])
            {
                ++i;
                ++j;
            }
            else
            {
                j = next[j];
            }
        }
    
        return j == p.length() ? i - j: -1;
    }
    复制代码

    ok,下面的问题是怎么求模式串 P 的next数组。

    next数组的初始条件是next[0] = -1,设next[j] = k,则有:

    那么,next[j+1]有两种情况:

    ,则有:

       此时next[j+1] = next[j] + 1 = k + 1

    , 如图所示:

    此时需要将P向右滑动之后继续比较P中index为 j 的字符与index为 next[k] 的字符:

     

    值得注意的是,上面的“向右滑动”本身就是一个kmp在失配情况下的滑动过程,将这个过程看 P 的自我匹配,则有:

    如果,则next[j+1] = next[k] + 1;

    否则,继续将 P 向右滑动,直至匹配成功,或者不存在这样的匹配,此时next[j+1] = 0。

     getNext函数的实现如下:

    复制代码
    void getNext(const std::string &p, std::vector<int> &next)
    {
        next.resize(p.size());
        next[0] = -1;
    
        int i = 0, j = -1;
        
        while (i != p.size() - 1)
        {
            //这里注意,i==0的时候实际上求的是next[1]的值,以此类推
            if (j == -1 || p[i] == p[j])
            {
                ++i;
                ++j;
                next[i] = j;
            }
            else
            {
                j = next[j];
            }
        }
    }
    复制代码

     至此,一个完整的kmp已经实现。

    5、getNext函数的进一步优化

    注意到,上面的getNext函数还存在可以优化的地方,比如:

                     i=3

    S: a   a   a   b   a   a   a   a   b

    P: a   a   a   a   b

                     j=3

    此时,i=3、j=3时发生失配,next[3]=2,此时还需要进行 3 次比较:

    i=3, j=2;  

    i=3, j=1;  

    i=3, j=0。

    而实际上,因为i=3, j=3时就已经知道a!=b,而之后的三次依旧是拿 a 和 b 比较,因此这三次比较都是多余的。

    此时应当直接将P向右滑动4个字符,进行 i=4, j=0的比较。

    一般而言,在getNext函数中,next[i]=j,也就是说当p[i]与S中某个字符匹配失败的时候,用p[j]继续与S中的这个字符比较。

    如果p[i]==p[j],那么这次比较是多余的(如同上面的例子),此时应该直接使next[i]=next[j]。

    完整的实现代码如下:

    复制代码
    void getNextUpdate(const std::string& p, std::vector<int>& next)
    {
        next.resize(p.size());
        next[0] = -1;
    
        int i = 0, j = -1;
    
        while (i != p.size() - 1)
        {
            //这里注意,i==0的时候实际上求的是nextVector[1]的值,以此类推
            if (j == -1 || p[i] == p[j])
            {
                ++i;
                ++j;
                //update
                //next[i] = j;
                //注意这里是++i和++j之后的p[i]、p[j]
                next[i] = p[i] != p[j] ? j : next[j];
            }
            else
            {
                j = next[j];
            }
        }
    }
    复制代码

    对应的,只需要在kmp算法中将 getNext(p, next); 替换成 getNextUpdate(p, next); 即可。

    6、时间复杂度分析

    下面以getNext函数为例,分析kmp算法的时间复杂度。

    复制代码
     1 void getNext(const std::string& p, std::vector<int>& next)
     2 {
     3     next.resize(p.size());
     4     next[0] = -1;
     5 
     6     int i = 0, j = -1;
     7 
     8     while (i != p.size() - 1)
     9     {
    10         if (j == -1 || p[i] == p[j])
    11         {
    12             ++i;
    13             ++j;
    14             next[i] = j;
    15         }
    16         else
    17         {
    18             j = next[j];
    19         }
    20     }
    21 }
    复制代码

    假定p.size()为m,分析其时间复杂度的困惑在于,在while里面不是每次循环都执行 ++i 操作,所以整个while的执行次数不一定为m。

    换个角度,注意到在每次循环中,无论 if 还是 else 都会修改 j 的值且每次循环仅对 j 进行一次修改,所以在整个while中 j 被修改的次数即为getNext函数的时间复杂度。

    每次成功匹配时,++i; ++j; , 由于 ++i 最多执行 m-1 次,故++j也最多执行 m-1 次,即 j 最多增加m-1次;

    对应的,只有在 j=next[j]; 处 j 的值一定会变小,由于 j 最多增加m-1次,故 j 最多减小m-1次。

    综上所述,getNext函数的时间复杂度为O(m),若带匹配串S的长度为n,则kmp函数的时间负责度为O(m+n)。

    7、kmp的应用优势

    ①快,O(m+n)的线性最坏时间复杂度;

    ②无需回朔访问待匹配字符串S,所以对处理从外设输入的庞大文件很有效,可以边读入边匹配。

  • 相关阅读:
    查找代码行数和查看域名版本
    iOS10里的通知与推送
    计算有多少个岛屿
    java.lang.NoClassDefFoundError: Could not initialize class com.haoyao.shop.common.XXX
    Windows 版本Mongodb 启动
    安装第三方库 报错Python version 2.7 required, which was not found in the registry
    Python 爬虫 报错 403 HTTP Error 403: Forbidden
    廖雪峰 练习 把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字
    利用Python 2.7打印杨辉三角
    MAVEN实战 读书笔记 第二章
  • 原文地址:https://www.cnblogs.com/shikamaru/p/5858994.html
Copyright © 2011-2022 走看看