zoukankan      html  css  js  c++  java
  • Oracle导致Redo日志暴增的SQL语句排查

    一、概述

    最近数据库频繁不定时的报出一些耗时长的SQL,甚至SQL执行时间过长,导致连接断开现象。下面是一些排查思路。

    二、查询日志的大小,日志组情况

    SELECT L.GROUP#,
           LF.MEMBER,
           L.ARCHIVED,
           L.BYTES / 1024 / 1024 "SIZE(M)",
           L.MEMBERS
    FROM V$LOG L,
         V$LOGFILE LF
    WHERE L.GROUP# = LF.GROUP#;

    查询结果:

     

     从上图可以看出目前共分为10个日志组,每个日志组2个文件,每个文件大小为3G。

    三、查询Oracle最近几天每小时归档日志产生数量

    SELECT SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH:MI:SS'), 1, 5)                             Day,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '00', 1, 0)) H00,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '01', 1, 0)) H01,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '02', 1, 0)) H02,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '03', 1, 0)) H03,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '04', 1, 0)) H04,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '05', 1, 0)) H05,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '06', 1, 0)) H06,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '07', 1, 0)) H07,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '08', 1, 0)) H08,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '09', 1, 0)) H09,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '10', 1, 0)) H10,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '11', 1, 0)) H11,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '12', 1, 0)) H12,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '13', 1, 0)) H13,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '14', 1, 0)) H14,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '15', 1, 0)) H15,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '16', 1, 0)) H16,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '17', 1, 0)) H17,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '18', 1, 0)) H18,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '19', 1, 0)) H19,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '20', 1, 0)) H20,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '21', 1, 0)) H21,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '22', 1, 0)) H22,
           SUM(DECODE(SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH24:MI:SS'), 10, 2), '23', 1, 0)) H23,
           COUNT(*)                                                                           TOTAL
    FROM v$log_history a
    WHERE first_time >= to_char(sysdate - 10)
    GROUP BY SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH:MI:SS'), 1, 5)
    ORDER BY SUBSTR(TO_CHAR(first_time, 'MM/DD/RR HH:MI:SS'), 1, 5) DESC;

    查询结果

     

    从上图可以看出业务高峰期每小时产生40个日志文件左右(目前设定的每个日志文件大小为3G),平均1.5分钟产生一个3G的日志文件。而oracle官方建议Redo日志平均30分钟切换一次最好

    四、查看最近2小时"块改变"最多的segment

    redo大量产生必然是由于大量产生"块改变"。从awr视图中找到"块改变"最多的segment。

    这是查询最近2小时(120分钟)的,begin_interval_time> sysdate - 120/1440,大家也可以自定义修改查询最近多少分钟的。

     1 select *
     2 from (SELECT to_char(begin_interval_time, 'YYYY_MM_DD HH24:MI') snap_time,
     3              dhsso.object_name,
     4              SUM(db_block_changes_delta)
     5       FROM dba_hist_seg_stat dhss,
     6            dba_hist_seg_stat_obj dhsso,
     7            dba_hist_snapshot dhs
     8       WHERE dhs.snap_id = dhss.snap_id
     9         AND dhs.instance_number = dhss.instance_number
    10         AND dhss.obj# = dhsso.obj#
    11         AND dhss.dataobj# = dhsso.dataobj#
    12         AND begin_interval_time > sysdate - 120 / 1440
    13       GROUP BY to_char(begin_interval_time, 'YYYY_MM_DD HH24:MI'), dhsso.object_name
    14       order by 3 desc)
    15 where rownum <= 5;

    查询结果:

     

    五、从awr视图中找出步骤四中排序靠前的对象涉及的SQL

    说明:LIKE '%MON_MODS$%'中MON_MODS是步骤1中查询出来的OBJECT_NAME

     1 SELECT to_char(begin_interval_time, 'YYYY_MM_DD HH24:MI'),
     2        dbms_lob.substr(sql_text, 4000, 1),
     3        dhss.instance_number,
     4        dhss.sql_id,
     5        executions_delta,
     6        rows_processed_delta
     7 FROM dba_hist_sqlstat dhss,
     8      dba_hist_snapshot dhs,
     9      dba_hist_sqltext dhst
    10 WHERE UPPER(dhst.sql_text) LIKE '%MON_MODS$%'
    11   AND dhss.snap_id = dhs.snap_id
    12   AND dhss.instance_Number = dhs.instance_number
    13   AND dhss.sql_id = dhst.sql_id;

    查询结果

     

    六、从ASH相关视图找到执行这些SQL的session、module和machine

    1 select * from dba_hist_active_sess_history WHERE sql_id = 'c9n8kv7afchtd';
    2 select * from v$active_session_history where sql_Id = 'c9n8kv7afchtd';
    c9n8kv7afchtd是SQL_ID,替换第二步查询的结果SQL_ID列

     七、排查问题SQL

    通过第四步,我们确定了导致产生大量redo日志主要涉及三张表,再通过第五步确定了每张表排名前五的SQL。针对这些产生大量Redo日志的SQL,就是需要做优化的地方。

  • 相关阅读:
    一步一步学Silverlight 2系列(22):在Silverlight中如何用JavaScript调用.NET代码
    一步一步学Silverlight 2系列(16):数据与通信之JSON
    一步一步学Silverlight 2系列(9):使用控件模板
    一步一步学Silverlight 2系列(30):使用Transform实现更炫的效果(下)
    一步一步学Silverlight 2系列(31):图形图像综合实例—实现水中倒影效果
    一步一步学Silverlight 2系列(20):如何在Silverlight中与HTML DOM交互(下)
    一步一步学Silverlight 2系列(33):Silverlight 2应用Web Service两例
    一步一步学Silverlight 2系列(14):数据与通信之WCF
    一步一步学Silverlight 2系列(3):界面布局
    一步一步学Silverlight 2系列(6):键盘事件处理
  • 原文地址:https://www.cnblogs.com/shileibrave/p/15599078.html
Copyright © 2011-2022 走看看