zoukankan      html  css  js  c++  java
  • Pairs Forming LCM

    题目:

    B - Pairs Forming LCM

    Time Limit:2000MS     Memory Limit:32768KB    

    Description

    Find the result of the following code:

    long long pairsFormLCM( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
    for( int j = i; j <= n; j++ )
    if( lcm(i, j) == n ) res++; // lcm means least common multiple
    return res;
    }

    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs(i, j) for which lcm(i, j) = n and (i ≤ j).

    Input

    Input starts with an integer T (≤ 200), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

    Output

    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

    Sample Input

    15

    2

    3

    4

    6

    8

    10

    12

    15

    18

    20

    21

    24

    25

    27

    29

    Sample Output

    Case 1: 2

    Case 2: 2

    Case 3: 3

    Case 4: 5

    Case 5: 4

    Case 6: 5

    Case 7: 8

    Case 8: 5

    Case 9: 8

    Case 10: 8

    Case 11: 5

    Case 12: 11

    Case 13: 3

    Case 14: 4

    Case 15: 2给定一个数字,n,求1~n之间可以找到的最小公倍数为n的对数

    解题思路:

    素因子分解:n=p1^x1*p2^x2**************pn^xn;

    a=p1^y1*p2^y2*p3^y3*****************pn^yn;

    b=p1^c1*p2^c2*p3^c3*****************pn^cn;

    gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)

    lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

    所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek

    当ai == ei时,bi可取 [0, ei] 中的所有数  有 ei+1 种情况,bi==ei时同理。

    那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
    除了 (n, n) 所有的情况都出现了两次  那么满足a<=b的有 (2*ei + 1)) / 2 + 1 个

    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <iomanip>
    #include <cmath>
    #include <ctime>
    #include <map>
    #include <set>
    using namespace std;
    #define lowbit(x) (x&(-x))
    #define max(x,y) (x>y?x:y)
    #define min(x,y) (x<y?x:y)
    #define MAX 100000000000000000
    #define MOD 1000000007
    #define pi acos(-1.0)
    #define ei exp(1)
    #define PI 3.141592653589793238462
    #define INF 0x3f3f3f3f3f
    #define mem(a) (memset(a,0,sizeof(a)))
    typedef long long ll;
    const int mx=10000002;
    ll pos[664583];
    ll top=0,n,t,k;
    bool vis[mx];
    void get_prime()
    {
        for(int i=2;i<mx;i++)
        {
            if(vis[i]) continue;
            pos[top++]=i;
            for(int j=2;j*i<mx;j++)
            {
                vis[i*j]=1;
            }
        }
    }
    ll solve(ll n)
    {
        ll ans=1;
        for(int i=0;i<top && pos[i]*pos[i]<=n;i++)
        {
            if(n%pos[i]==0)
            {
                int cnt=0;
                while(n%pos[i]==0)
                {
                    n/=pos[i];
                    cnt++;
                }
                ans*=(2*cnt+1);
            }
        }
        if(n>1) ans*=(2*1+1);
        return (ans+1)/2;
    } 
    int main()
    {
        get_prime();
        scanf("%lld",&t);
        k=t;
        while(t--)
        {
            scanf("%lld",&n);
            printf("Case %lld: %lld
    ",k-t,solve(n));
        }
    }
  • 相关阅读:
    hdu 5115 区间dp ***
    CF 149D Coloring Brackets 区间dp ****
    区间dp总结
    hdu 5284 BestCoder Round #48 ($) 1001 水题 *
    vijos 1038 括号+路径 ***
    vijos 1037 ***
    vijos 1028 LIS *
    使用alpine 构建 golang 运行容器
    Go Http包解析:为什么需要response.Body.Close()
    如果open的file不close , 会有什么样的影响
  • 原文地址:https://www.cnblogs.com/shinianhuanniyijuhaojiubujian/p/7235774.html
Copyright © 2011-2022 走看看