zoukankan      html  css  js  c++  java
  • Pairs Forming LCM

    题目:

    B - Pairs Forming LCM

    Time Limit:2000MS     Memory Limit:32768KB    

    Description

    Find the result of the following code:

    long long pairsFormLCM( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
    for( int j = i; j <= n; j++ )
    if( lcm(i, j) == n ) res++; // lcm means least common multiple
    return res;
    }

    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs(i, j) for which lcm(i, j) = n and (i ≤ j).

    Input

    Input starts with an integer T (≤ 200), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

    Output

    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

    Sample Input

    15

    2

    3

    4

    6

    8

    10

    12

    15

    18

    20

    21

    24

    25

    27

    29

    Sample Output

    Case 1: 2

    Case 2: 2

    Case 3: 3

    Case 4: 5

    Case 5: 4

    Case 6: 5

    Case 7: 8

    Case 8: 5

    Case 9: 8

    Case 10: 8

    Case 11: 5

    Case 12: 11

    Case 13: 3

    Case 14: 4

    Case 15: 2给定一个数字,n,求1~n之间可以找到的最小公倍数为n的对数

    解题思路:

    素因子分解:n=p1^x1*p2^x2**************pn^xn;

    a=p1^y1*p2^y2*p3^y3*****************pn^yn;

    b=p1^c1*p2^c2*p3^c3*****************pn^cn;

    gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)

    lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

    所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek

    当ai == ei时,bi可取 [0, ei] 中的所有数  有 ei+1 种情况,bi==ei时同理。

    那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
    除了 (n, n) 所有的情况都出现了两次  那么满足a<=b的有 (2*ei + 1)) / 2 + 1 个

    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <iomanip>
    #include <cmath>
    #include <ctime>
    #include <map>
    #include <set>
    using namespace std;
    #define lowbit(x) (x&(-x))
    #define max(x,y) (x>y?x:y)
    #define min(x,y) (x<y?x:y)
    #define MAX 100000000000000000
    #define MOD 1000000007
    #define pi acos(-1.0)
    #define ei exp(1)
    #define PI 3.141592653589793238462
    #define INF 0x3f3f3f3f3f
    #define mem(a) (memset(a,0,sizeof(a)))
    typedef long long ll;
    const int mx=10000002;
    ll pos[664583];
    ll top=0,n,t,k;
    bool vis[mx];
    void get_prime()
    {
        for(int i=2;i<mx;i++)
        {
            if(vis[i]) continue;
            pos[top++]=i;
            for(int j=2;j*i<mx;j++)
            {
                vis[i*j]=1;
            }
        }
    }
    ll solve(ll n)
    {
        ll ans=1;
        for(int i=0;i<top && pos[i]*pos[i]<=n;i++)
        {
            if(n%pos[i]==0)
            {
                int cnt=0;
                while(n%pos[i]==0)
                {
                    n/=pos[i];
                    cnt++;
                }
                ans*=(2*cnt+1);
            }
        }
        if(n>1) ans*=(2*1+1);
        return (ans+1)/2;
    } 
    int main()
    {
        get_prime();
        scanf("%lld",&t);
        k=t;
        while(t--)
        {
            scanf("%lld",&n);
            printf("Case %lld: %lld
    ",k-t,solve(n));
        }
    }
  • 相关阅读:
    走进小楼满院星空
    极致美
    关于文件夹的所有文件名称修改以及输出
    Math类的常用方法
    Automation Framework Design 自动化框架设计思想
    选择适合入门的自动化测试框架TestNG 基于Java语言的入门选择之一
    MAC系统如果碰到报错信息:sudo:command not found
    UI自动化测试框架Gauge 碰到无法识别Undefined Steps 红色波纹标记
    如何搭建测试平台体系
    Selenium自动化测试框架Ride使用XLRD对于Excel测试数据的管理和操作
  • 原文地址:https://www.cnblogs.com/shinianhuanniyijuhaojiubujian/p/7235774.html
Copyright © 2011-2022 走看看