题目链接:http://abc044.contest.atcoder.jp/tasks/arc060_a
Time limit : 2sec / Memory limit : 256MB
Score : 300 points
Problem Statement
Tak has N cards. On the i-th (1≤i≤N) card is written an integer xi. He is selecting one or more cards from these N cards, so that the average of the integers written on the selected cards is exactly A. In how many ways can he make his selection?
Constraints
- 1≤N≤50
- 1≤A≤50
- 1≤xi≤50
- N, A, xi are integers.
Partial Score
- 200 points will be awarded for passing the test set satisfying 1≤N≤16.
Input
The input is given from Standard Input in the following format:
N A x1 x2 … xN
Output
Print the number of ways to select cards such that the average of the written integers is exactly A.
Sample Input 1
Copy
4 8 7 9 8 9
Sample Output 1
Copy
5
- The following are the 5 ways to select cards such that the average is 8:
- Select the 3-rd card.
- Select the 1-st and 2-nd cards.
- Select the 1-st and 4-th cards.
- Select the 1-st, 2-nd and 3-rd cards.
- Select the 1-st, 3-rd and 4-th cards.
Sample Input 2
Copy
3 8 6 6 9
Sample Output 2
Copy
0
Sample Input 3
Copy
8 5 3 6 2 8 7 6 5 9
Sample Output 3
Copy
19
Sample Input 4
Copy
33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Sample Output 4
Copy
8589934591
- The answer may not fit into a 32-bit integer
题意:给定一串数字,问能够组成多少种不连续子串使得子串的平均数为某个数
题解:用动态规划,i表示相加的个数,j表示加起来后的值
1 #include <iostream> 2 #include <algorithm> 3 #include <cstring> 4 #include <cstdio> 5 #include <vector> 6 #include <cstdlib> 7 #include <iomanip> 8 #include <cmath> 9 #include <ctime> 10 #include <map> 11 #include <set> 12 #include <queue> 13 using namespace std; 14 #define lowbit(x) (x&(-x)) 15 #define max(x,y) (x>y?x:y) 16 #define min(x,y) (x<y?x:y) 17 #define MAX 100000000000000000 18 #define MOD 1000000007 19 #define pi acos(-1.0) 20 #define ei exp(1) 21 #define PI 3.141592653589793238462 22 #define INF 0x3f3f3f3f3f 23 #define mem(a) (memset(a,0,sizeof(a))) 24 typedef long long ll; 25 ll gcd(ll a,ll b){ 26 return b?gcd(b,a%b):a; 27 } 28 bool cmp(int x,int y) 29 { 30 return x>y; 31 } 32 const int N=55; 33 const int mod=1e9+7; 34 ll dp[N][N*N]; 35 int main() 36 { 37 int n,a; 38 cin>>n>>a; 39 dp[0][0]=1; 40 for(int i=1;i<=n;i++){ 41 int x; 42 cin>>x; 43 for(int j=i-1;j>=0;j--) 44 for(int k=0;k<=N*j;k++) 45 dp[j+1][k+x]+=dp[j][k]; 46 } 47 ll ans=0; 48 for(int i=1;i<=n;i++) 49 ans+=dp[i][i*a]; 50 cout<<ans<<endl; 51 return 0; 52 }