zoukankan      html  css  js  c++  java
  • 【持续更新】leetcode算法-数组篇

    会在近期陆续地完成数组篇的整理,希望对找工作的小伙伴有所帮助。
     
    1、Two Sum:两数相加为一固定值,求其下标。一次遍历数组,用一个hash表存储已经访问过的数及其下标,对于新访问的数value,查hash表中是否有target-value的值,如果有,程序输出,如果没有,继续访问下一个数直到访问完。
     
     1 public int[] twoSum(int[] nums, int target) {
     2     Map<Integer, Integer> hash = new HashMap<>();
     3     for (int i=0; i<nums.length; i++){
     4         if(hash.containsKey(target-nums[i])){
     5             return new int[]{hash.get(target-nums[i]),i};
     6         }else{
     7             hash.put(nums[i],i);
     8         }
     9     }
    10     return new int[]{0,0};
    11 }
     
    2、Median of Two Sorted Arrays:求两个有序数组的中位数。其实就是求第k大的数。首先比较两数组k/2处的数的大小,若a[k/2]<b[k/2],则a[0,...k/2]可以省去,则求剩余数组k-k/2大的数,依次下去,知道k=1,求第1大的数,即比较两数组的第一个元素,取小的那个。
     
    3、Container With Most Water:给一个数组,每一个元素表示一个高度,找两个元素和x轴围城的容器装下水的最大量。直接的做法是暴力求解,O(n2)复杂度。优化做法是,从两头向中间靠,比较两头元素的大小,大的不动,小的往中间移动。
     
     1 public int maxArea(int[] height) {
     2     int max = 0;
     3     int left = 0;
     4     int right = height.length - 1;
     5     int curArea = 0;
     6     while (left < right) {
     7         curArea = (right - left) * (height[right] < height[left] ? height[right--] : height[left++]);
     8         if (curArea > max)
     9             max = curArea;
    10     }
    11     return max;
    12 }
     
    4、3Sum:在数组中求三个数相加等于0。先排序,然后遍历数组,两重循环。3个指针,外层循环遍历数组,内层循环遍历外层循环后面的数,如果和大于0,则指针往左移动,如果小于0,则往右移动。
     
     1 public List<List<Integer>> threeSum(int[] nums) {
     2     List<List<Integer>> list = new ArrayList<List<Integer>>();
     3     Set<List<Integer>> set = new HashSet<>();
     4     sort(nums);
     5     int j = 0;
     6     int k = 0;
     7     for (int i = 0; i < nums.length - 2; i++) {
     8         j = i + 1;
     9         k = nums.length - 1;
    10         while (j < k) {
    11             int x = nums[i] + nums[j] + nums[k];
    12             if (x == 0) {
    13                 List<Integer> innerList = new ArrayList<>();
    14                 innerList.add(nums[i]);
    15                 innerList.add(nums[j]);
    16                 innerList.add(nums[k]);
    17                 if (!set.contains(innerList)) {
    18                     set.add(innerList);
    19                     list.add(innerList);   
    20                 }
    21                 j = j + 1;
    22                 k = k - 1;
    23             } else if (x > 0) {
    24                 k = k - 1;
    25             } else {
    26                 j = j + 1;
    27             }
    28         }
    29     }
    30     return list;
    31 }
     
    5、3Sum Closest:类似3Sum
     
    6、4Sum:类似3Sum
     
    7、Remove Duplicates from Sorted Array:有序数组去重,返回剩余数的个数
     
     1 public int removeDuplicates(int[] nums) {
     2     if (nums.length == 0)    return 0;
     3     int index = 0;
     4     for (int i = 1; i < nums.length; i++) {
     5         if (nums[index] != nums[i]) {
     6             nums[++index] = nums[i];
     7         }
     8     }
     9     return index + 1;
    10 }
     
    8、Remove Element:数组中移除给定的数,返回剩余数的个数
     
    1 public int removeElement(int[] nums, int val) {
    2     int index=0;
    3     for(int i =0; i<nums.length; i++){
    4         if(nums[i] != val) nums[index++]=nums[i];
    5     }
    6     return index;
    7 }
     
    9、Next Permutation:数组表示一个整数,返回下一个排列数,如果没有比原数组大的排列数,则返回最小的排列数
     
     1 public void nextPermutation(int[] nums) {
     2     if(nums==null || nums.length<2) return;
     3     int len = nums.length;
     4     // 从右向左遍历,找到第一个前一个数小于后一个的数(升序对),记value=nums[i-1]
     5     int i = len - 1;
     6     while (i>0 && nums[i-1]>=nums[i]){
     7         i--;
     8     }
     9     if(i==0){
    10         reverse(nums, 0, len-1);     // 反转数组
    11     }else{
    12         // 从右向左遍历,找到第一个大于value的数
    13         int j = i-1;
    14         int k = len -1;
    15         while(nums[j]>=nums[k]){
    16             k--;
    17         }
    18         int temp = nums[j];
    19         nums[j] = nums[k];
    20         nums[k] = temp;
    21         reverse(nums, i, len-1);
    22     }
    23 }
     
    10、Search in Rotated Sorted Array:在循环有序的数组(数没有重复)中查询一个数,返回这个数的下标,没有则返回-1
     
     1 public int search(int[] nums, int target) {
     2     if(nums==null || nums.length==0) return -1;
     3     // 找到最小值,即旋转中心
     4     int n=nums.length;
     5     int lo=0, hi=n-1;
     6     while(lo<hi){
     7         int mid=(hi-lo)/2+lo;
     8         if(nums[mid]>nums[hi]) lo=mid+1;
     9         else hi=mid;
    10     }
    11     int pivot=lo;
    12     lo=0;
    13     hi=n-1;
    14     while(lo<=hi){
    15         int mid=(hi-lo)/2+lo;
    16         int realmid=(mid+pivot)%n;
    17         if(nums[realmid]==target) return realmid;
    18         else if(nums[realmid]>target) hi=mid-1;
    19         else lo=mid+1;
    20     }
    21     return -1;
    22 }
     
    11、Search for a Range:找到给定的数在有序数组中的下标区间,两次二分搜索,一次找左边界,一次找右边界
     
     1 public int[] searchRange(int[] nums, int target) {
     2     int[] ret = {-1,-1};
     3     if(nums==null || nums.length==0) return nums;
     4     int n=nums.length;
     5     int lo=0, hi=n-1;
     6     while(lo<hi){
     7         int mid=(hi-lo)/2+lo;
     8         if(nums[mid]<target) lo=mid+1;
     9         else hi=mid;
    10     }
    11     if(nums[lo]!=target) return ret;
    12     ret[0]=lo;
    13  
    14     lo=0;
    15     hi=n-1;
    16     while(lo<hi){
    17         int mid=(hi-lo)/2+lo+1;     // 保证偏向右边
    18         if(nums[mid]>target) hi=mid-1;
    19         else lo=mid;
    20     }
    21     ret[1]=lo;
    22     return ret;
    23 }

     

    12、Search Insert Position:二分查找
     
    13、Combination Sum:求数组中元素等于给定的数的集合,允许重复,回溯法
     
     1 public List<List<Integer>> combinationSum(int[] candidates, int target) {
     2     List<List<Integer>> res = new ArrayList<List<Integer>>();
     3     if(candidates == null || candidates.length == 0)
     4         return res;
     5     List<Integer> list = new ArrayList<>();
     6     helper(candidates, target, 0, list, res);
     7     return res;
     8 }
     9 public void helper(int[] candidates, int target, int start, List<Integer> temp, List<List<Integer>> res) {
    10     if(target == 0){
    11         res.add(new ArrayList<>(temp));
    12         return;
    13     }
    14     if(target < 0) return;
    15     for (int i = start; i < candidates.length; i++){
    16         temp.add(candidates[i]);
    17         helper(candidates, target-candidates[i], i, temp, res);
    18         temp.remove(temp.size() - 1);
    19     }
    20 }

     

    14、Combination Sum II:求数组中元素等于给定的数的集合,数组中的元素只能用一次,回溯法
     
     1 public List<List<Integer>> combinationSum2(int[] candidates, int target) {
     2     List<List<Integer>> res = new ArrayList<List<Integer>>();
     3     if(candidates.length == 0 || candidates == null)
     4         return res;
     5     List<Integer> list = new ArrayList<>();
     6     Arrays.sort(candidates);
     7     helper(candidates, target, 0, list, res);
     8     return res;
     9 }
    10 public void helper(int[] candidates, int target, int start, List<Integer> temp, List<List<Integer>> res) {
    11     if(target == 0){
    12         res.add(new ArrayList<>(temp));
    13         return;
    14     }
    15     else if(target < 0)
    16         return;
    17     else {
    18         for (int i = start; i < candidates.length; i++){
    19             // 跳过重复元素
    20             if(i>start && candidates[i]==candidates[i-1])
    21                 continue;
    22             temp.add(candidates[i]);
    23             helper(candidates, target-candidates[i], i+1, temp, res);
    24             temp.remove(temp.size() - 1);
    25         }
    26     }
    27 }

     

    15、First Missing Positive:无序数组,找到第一个缺失的正数,主要思想是将正确的数放到正确的位置上
     
     1 public int firstMissingPositive(int[] nums) {
     2     if(nums == null || nums.length == 0) return 1;
     3     int n = nums.length;
     4     for (int i=0; i<n; i++){
     5         while(nums[i]>0 && nums[i]<=n && nums[i]!=nums[nums[i]-1]) swap(nums, i, nums[i]-1);
     6     }
     7     for(int i=0; i<n; i++){
     8         if(nums[i]!=i+1) return i+1;
     9     }
    10     return n+1;
    11 }
     
    16、Trapping Rain Water:求最大的积水量。解法:先找到最大高度的下标,然后分别从两边往最大高度靠,同时维护一个当前最大值变量,积水量就是当前最大值减去当前高度。
     
     1 public int trap(int[] height) {
     2     if (height==null || height.length <= 2) return 0;
     3     // 找最大高度
     4     int maxIndex=0;
     5     int max=0;
     6     for(int i=0; i<height.length; i++){
     7         if(height[i]>max){
     8             max=height[i];
     9             maxIndex=i;
    10         }
    11     }
    12     int result=0;
    13     int curMax=0;
    14     for(int i=0; i<maxIndex; i++){
    15         if(height[i]<curMax){
    16             result += curMax-height[i];
    17         }else{curMax=height[i];}
    18     }
    19     curMax=0;
    20     for(int i=height.length-1; i>maxIndex; i--){
    21         if(height[i]<curMax) result += curMax-height[i];
    22         else curMax=height[i];
    23     }
    24     return result;
    25 }
    17、Jump Game II:给定一个数组,求数组头到数组尾的最少的步数。贪心法。
     
     1 public int jump(int[] nums) {
     2     if(nums==null || nums.length==0) return 0;
     3     int dis=0;
     4     int edge=0;
     5     int steps=0;
     6     for(int i=0; i<nums.length-1 && i<=dis; i++){
     7         dis=Math.max(dis, i+nums[i]);
     8         if(dis>=nums.length-1) return steps+1;
     9         // 判断是否在一次跳转之内,只有等于最大边界时才会步数加1
    10         if(edge == i){
    11             edge = dis;
    12             steps++;
    13         }
    14     }
    15     return 0;
    16 }
    18、Rotate Image:顺时针旋转n*n矩阵。先转置,再左右翻转。
     
     1 public void rotate(int[][] matrix) {
     2     if(matrix==null || matrix.length==0) return;
     3     int n = matrix.length;
     4     int tmp;
     5     for (int i = 0; i < n; ++i) {
     6         for (int j = i; j < n; ++j) {
     7             tmp = matrix[i][j];
     8             matrix[i][j] = matrix[j][i];
     9             matrix[j][i] = tmp;
    10         }
    11     }
    12     for(int i=0; i<n; i++){
    13         reverse(matrix[i]);
    14     }
    15 }
    19、Maximum Subarray:求数组的最大子串和。
     
     1 public int maxSubArray(int[] nums) {
     2     if(nums==null || nums.length==0) return 0;
     3     int max=nums[0];
     4     int curSum=0;
     5     for(int i=0; i<nums.length; i++){
     6         curSum=Math.max(nums[i], curSum+nums[i]);
     7         max=Math.max(max, curSum);
     8     }
     9     return max;
    10 }
    20、Spiral Matrix:螺旋输出矩阵的元素
     
     1 public List<Integer> spiralOrder(int[][] matrix) {
     2     List<Integer> res = new ArrayList<>();
     3     int m = matrix.length;
     4     if (m < 1) return res;
     5     int n = matrix[0].length;
     6     int left = 0;
     7     int right = n-1;
     8     int up = 0;
     9     int down = m-1;
    10     while (left <= right && up <= down) {
    11         // traverse right
    12         for (int i = left; i <= right; i++) {
    13             res.add(matrix[up][i]);
    14         }
    15         up++;
    16         // traverse down
    17         for (int i = up; i <= down; i++) {
    18             res.add(matrix[i][right]);
    19         }
    20         right--;
    21         // traverse left
    22         if (up <= down) {
    23             for (int i = right; i >= left; i--) {
    24                 res.add(matrix[down][i]);
    25             }
    26         }
    27         down--;
    28         // traverse up
    29         if (left <= right) {
    30             for (int i = down; i >= up; i--) {
    31                 res.add(matrix[i][left]);
    32             }
    33         }
    34         left++;
    35     }
    36 
    37     return res;
    38 }
    21、Jump Game:给定一个数组,判断能否从数组头到达数组尾。贪心法。维护一个变量,记录当前位置能到达的最远的距离,当最远距离超出数组长度,即可判断能到达数组尾。
     
    1 public boolean canJump(int[] nums) {
    2     if(nums==null || nums.length==0) return false;
    3     int dis=0;
    4     for(int i=0; i<nums.length && i<=dis; i++){
    5         dis = Math.max(dis, i+nums[i]);
    6         if(dis >= nums.length-1) return true;
    7     }
    8     return false;
    9 }
    22、Merge Intervals:合并区间。先按照区间的前端进行排序操作,再查看是否出现覆盖的情况。
     
     1 public List<Interval> merge(List<Interval> intervals) {
     2     List<Interval> res = new ArrayList<>();
     3     int n = intervals.size();
     4     if (n < 1) return res;
     5     // Sort by ascending starting point using an anonymous Comparator
     6     Collections.sort(intervals, new Comparator<Interval>() {
     7         @Override
     8         public int compare(Interval i1, Interval i2) {
     9             return Integer.compare(i1.start, i2.start);
    10         }
    11     });
    12     int start = intervals.get(0).start;
    13     int end = intervals.get(0).end;
    14     for(int i=1; i<n; i++){
    15         Interval curInteval = intervals.get(i);
    16         if(curInteval.start <= end){
    17             end = Math.max(end, curInteval.end);
    18         }
    19         else{
    20             res.add(new Interval(start, end));
    21             start = curInteval.start;
    22             end = curInteval.end;
    23         }
    24     }
    25 }
    23、Insert Interval:给定一个按前端排好序的区间数组,现有另外一个区间,求插入并合并后的区间。
     
     1 public List<Interval> insert(List<Interval> intervals, Interval newInterval) {
     2     int i=0;
     3     while(i < intervals.size() && intervals.get(i).end < newInterval.start) i++;          // 是否可以用二分找到这个i?
     4     while(i<intervals.size() && intervals.get(i).start <= newInterval.end){
     5         newInterval = new Interval(Math.min(intervals.get(i).start, newInterval.start), Math.max(intervals.get(i).end, newInterval.end));
     6         intervals.remove(i);
     7     }
     8     intervals.add(i,newInterval);
     9     return intervals;
    10 }
    24、Spiral Matrix II:生成螺旋的矩阵
     
     1 public int[][] generateMatrix(int n) {
     2     int[][] matrix = new int[n][n];
     3     if (n < 1)
     4         return matrix;
     5     int count = 1;
     6     int left = 0;
     7     int right = n-1;
     8     int up = 0;
     9     int down = n-1;
    10     while (left <= right && up <= down) {
    11         for (int i = left; i <= right; i++) {
    12             matrix[up][i] = count;
    13             count++;
    14         }
    15         up++;
    16         for (int i = up; i <= down; i++) {
    17             matrix[i][right] = count;
    18             count++;
    19         }
    20         right--;
    21         if (up <= down) {
    22             for (int i = right; i >= left; i--) {
    23                 matrix[down][i] = count;
    24                 count++;
    25             }
    26             down--;
    27         }
    28         if (left <= right) {
    29             for (int i = down; i >= up; i--) {
    30                 matrix[i][left] = count;
    31                 count++;
    32             }
    33             left++;
    34         }
    35     }
    36     return matrix;
    37 }
    25、Unique Paths:求从左上到右下的路径数。
     
    public int uniquePaths(int m, int n) {
        int[] paths = new int[n+1];
        Arrays.fill(paths, 1);
        paths[0] = 0;
        for(int i=0; i<m-1; i++){
            for(int j=0; j<n; j++){
                paths[j+1] = paths[j+1] + paths[j];
            }
        }
        return paths[n];
    }
    26、Unique Paths II:存在障碍的情况下,求从左上到右下的路径数。
     
     1 public int uniquePathsWithObstacles(int[][] obstacleGrid) {
     2     int n = obstacleGrid.length;
     3     int m = obstacleGrid[0].length;
     4     int[][] p = new int[n][m];
     5     // 初始化第一行
     6     for (int i = 0; i < m; i++){
     7         p[0][i] = 1 - obstacleGrid[0][i];
     8         if (p[0][i] == 0)   break;
     9     }
    10     // 初始化第一列
    11     for (int j = 0; j < n; j++){
    12         p[j][0] = 1 - obstacleGrid[j][0];
    13         if (p[j][0] == 0) break;
    14     }
    15     for ( int i = 1; i < n; i++){
    16         for (int j = 1; j < m; j++) {
    17             if(obstacleGrid[i][j] == 1)
    18                 p[i][j] = 0;
    19             else p[i][j] = p[i-1][j] + p[i][j-1];
    20         }
    21     }
    22     return p[n-1][m-1];
    23 }
    27、Minimum Path Sum:求从左上到右下的最小的路径的长度,只能向右或向下走。
     
     1 public int minPathSum(int[][] grid) {
     2     if(grid==null || grid.length==0) return 0;
     3     int m = grid.length;
     4     int n = grid[0].length;
     5     int[][] p = new int[m][n];
     6     for (int i = 0; i < m; i++) {
     7         for (int j = 0; j < n; j++) {
     8             if (i == 0 && j == 0)
     9                 p[i][j] = grid[i][j];
    10             else if (i == 0 && j > 0)
    11                 p[i][j] = p[i][j-1] + grid[i][j];
    12             else if (i > 0 && j == 0)
    13                 p[i][j] = p[i-1][j] + grid[i][j];
    14             else
    15                 p[i][j] = Math.min(p[i-1][j], p[i][j-1]) + grid[i][j];
    16         }
    17     }
    18     return p[m-1][n-1];
    19 }
    28、Plus One:数组加1
     
    public int[] plusOne(int[] digits) {
        int carry = 1;
        for(int i=digits.length-1; i>=0; i--){
            carry += digits[i];
            digits[i] = carry % 10;
            carry /= 10;
        }
        if(carry==0) return digits;
        else{
            int[] newdigits = new int[digits.length+1];
            newdigits[0]=1;
            for(int i=1; i<newdigits.length; i++){
                newdigits[i]=digits[i-1];
            }
            return newdigits;
        }
    }
    29、Set Matrix Zeroes:当(i,j)=0是,把第i行和第j列置为0
     
     1 public void setZeroes(int[][] matrix) {
     2     boolean col0 = false;
     3     for (int i = 0; i < matrix.length; i++) {
     4         if(matrix[i][0]==0) col0=true;
     5         for (int j = 1; j < matrix[0].length; j++) {
     6             if (matrix[i][j] == 0) {
     7                 matrix[0][j] = 0;
     8                 matrix[i][0] = 0;
     9             }
    10         }
    11     }
    12     for (int i = matrix.length-1; i>=0; i--) {
    13         for (int j = matrix[0].length-1; j>=1; j--) {
    14             if (matrix[0][j] == 0 || matrix[i][0] == 0) {
    15                 matrix[i][j] = 0;
    16             }
    17         }
    18         if(col0) matrix[i][0]=0;
    19     }
    20 }
    30、Search a 2D Matrix:在矩阵里查找数。二分查找
     
     1 public boolean searchMatrix(int[][] matrix, int target) {
     2     if(matrix==null || matrix[0].length==0) return false;
     3     int m=matrix.length;
     4     int n=matrix[0].length;
     5     int lo=0;
     6     int hi=m*n-1;
     7     int mid;
     8     while(lo<=hi){
     9         mid=(hi-lo)/2+lo;
    10         int row=mid/n;
    11         int col=mid%n;
    12         if(matrix[row][col]==target) return true;
    13         else if(matrix[row][col] > target) hi = mid-1;
    14         else lo = mid + 1;
    15     }
    16     return false;
    17 }
    31、Sort Colors:给定一个数组,元素只有0,1,2,给它排序。可以用计数排序,也可以用交换。
     
     1 public void sortColors(int[] nums) {
     2     if(nums==null || nums.length==0) return;
     3     int lo=0;
     4     int hi=nums.length-1;
     5     int i=0;
     6     while(i<=hi){
     7         if(nums[i]==0) swap(nums, i++, lo++);
     8         else if(nums[i]==2) swap(nums, i, hi--);
     9         else{i++;}
    10     }
    11 }
    32、Subsets:求一个集合的所有子集
     
     1 public List<List<Integer>> subsets(int[] nums) {
     2     List<List<Integer>> res = new ArrayList<>();
     3     List<Integer> list = new ArrayList<>();
     4     res.add(list);
     5     for(int i=0; i<nums.length; i++){
     6         int size = res.size();
     7         for(int k=0; k<size; k++){
     8             List<Integer> newList = new ArrayList<>(res.get(k));
     9             newList.add(nums[i]);
    10             res.add(newList);
    11         }
    12     }
    13     return res;
    14 }
     1 public List<List<Integer>> subsets(int[] nums) {
     2     Arrays.sort(nums);
     3     List<List<Integer>> res = new ArrayList<>();
     4     int totalNumber = 1 << nums.length;
     5     for(int i=0; i<totalNumber; i++){
     6         List<Integer> set = new ArrayList<>();
     7         for(int j=0; j<nums.length; j++){
     8             if(((i>>>j) & 0x1) == 1) set.add(nums[j]);
     9         }
    10         res.add(set);
    11     }
    12     return res;
    13 }
    33、Word Search: 在二维字符数组中,查找单词,回溯法
     
     1 public boolean exist(char[][] board, String word) {
     2     for(int i = 0; i < board.length; i++)
     3         for(int j = 0; j < board[0].length; j++){
     4             if(exist(board, i, j, word, 0)) return true;
     5         }
     6     return false;
     7 }
     8 private boolean exist(char[][] board, int i, int j, String word, int ind){
     9     if(ind == word.length()) return true;
    10     if(i > board.length-1 || i <0 || j<0 || j >board[0].length-1 || board[i][j]!=word.charAt(ind)) return false;
    11     char ch=board[i][j];
    12     board[i][j]='*';
    13     boolean result =    exist(board, i-1, j, word, ind+1) ||
    14                         exist(board, i, j-1, word, ind+1) ||
    15                         exist(board, i, j+1, word, ind+1) ||
    16                         exist(board, i+1, j, word, ind+1);
    17     board[i][j] = ch;
    18     return result;
    19 }
    34、Remove Duplicates from Sorted Array II: 数组已排序,去除数组中重复的元素,允许出现两次
     
     1 public int removeDuplicates(int[] nums) {
     2     if(nums.length <= 2) return nums.length;
     3     int index=0;
     4     int p=1;
     5     int counter=1;
     6     while(p<nums.length){
     7         if(nums[p] == nums[index]){
     8             if(counter == 2){
     9                 p++;
    10             }
    11             else{
    12                 nums[++index] = nums[p];
    13                 p++;
    14                 counter = 2;
    15             }
    16         }
    17         else {
    18             nums[++index] = nums[p];
    19             p++;
    20             counter = 1;
    21         }
    22     }
    23     return index+1;
    24 }
    35、Search in Rotated Sorted Array II: 在循环有序数组中查找,数组中有重复的数
     1 public class Solution {
     2     public boolean search(int[] nums, int target) {
     3         if (nums.length < 1)
     4             return false;
     5         int start = 0;
     6         int end = nums.length - 1;
     7         while (start < end) {
     8             int mid = start + (end-start)/2;
     9             if (nums[mid] == target) return true;
    10 
    11             if (nums[start] < nums[mid]) {
    12                 if (target < nums[mid] && target >= nums[start])
    13                     end = mid - 1;
    14                 else start = mid + 1;
    15             }
    16             else if (nums[start] > nums[mid]){
    17                 if (target > nums[mid] && target <= nums[end])
    18                     start = mid + 1;
    19                 else end = mid - 1;
    20             }
    21             else {
    22                 start++;
    23             }
    24         }
    25         return target == nums[start];
    26     }
    27 }
     
    36、Largest Rectangle in Histogram: 求最大的长方形面积
     
     1 public int largestRectangleArea(int[] heights) {
     2     int maxArea = 0;
     3     Stack<Integer> stack = new Stack<>();
     4     int i=0;
     5     int height = 0;
     6     int area = 0;
     7     while(i <= heights.length){
     8         if(i < heights.length) height = heights[i];
     9         else height = 0;
    10         if(stack.isEmpty() || height >= heights[stack.peek()]){
    11             stack.push(i++);
    12         }
    13         else{
    14             int index = stack.pop();
    15             if(stack.isEmpty()) area = i * heights[index];
    16             else {
    17                 area = (i-stack.peek()-1) * heights[index];
    18             }
    19             maxArea = Math.max(area, maxArea);
    20         }
    21     }
    22     return maxArea;
    23 }
    37、Maximal Rectangle: 利用36题结论
     
     1 public int maximalRectangle(char[][] matrix) {
     2     int m = matrix.length;
     3     if (m < 1){
     4         return 0;
     5     }
     6     int n = matrix[0].length;
     7     int[][] heights = new int[m][n+1];
     8     for(int i = 0; i < m; i++){
     9         for(int j = 0; j < n; j++) {
    10             if(matrix[i][j] == '0'){
    11                 heights[i][j] = 0;
    12             }else {
    13                 heights[i][j] = i == 0 ? 1 : heights[i - 1][j] + 1;
    14             }
    15         }
    16     }
    17     int maxArea=0;
    18     for(int i = 0; i < m; i++){
    19         int area = maxAreaInHist(heights[i]);
    20         if(area > maxArea){
    21             maxArea=area;
    22         }
    23     }
    24     return maxArea;
    25 }
    38、Merge Sorted Array: 类似于插入排序
     
    39、Subsets II: 数组子集,数组中有重复的元素
     
     1 public List<List<Integer>> subsetsWithDup(int[] nums) {
     2     int length = nums.length;
     3     Arrays.sort(nums);
     4 
     5     List<List<Integer>> res = new ArrayList<>();
     6     List<Integer> emptyList = new ArrayList<>();
     7     res.add(emptyList);
     8 
     9     for (int i = 0; i < length; i++) {
    10         int count = 1;
    11         while (i+1< length && nums[i] == nums[i+1]) {
    12             count++;
    13             i++;
    14         }
    15         int size = res.size();
    16         for (int j = 0; j < size; j++) {
    17             for (int k = 0; k < count; k++) {
    18                 List<Integer> newList = new ArrayList<>(res.get(j));
    19                 for (int p = 0; p <= k; p++)
    20                     newList.add(nums[i]);
    21                 res.add(newList);
    22             }
    23         }
    24     }
    25     return res;
    26 }
    40、Construct Binary Tree from Preorder and Inorder Traversal: 根据先序和中序遍历构建树
     
    构建过程,在中序遍历中找根节点的下标可以用hashmap加速
    41、Construct Binary Tree from Inorder and Postorder Traversal: 根据中序和后序遍历构建树
     
    构建过程,在中序遍历中找根节点的下标可以用hashmap加速
    42、Pascal's Triangle: 生成杨辉三角
     
     1 public List<List<Integer>> generate(int numRows) {
     2     List<List<Integer>> res = new ArrayList<>();
     3 
     4     if (numRows < 1) return res;
     5     List<Integer> first = new ArrayList<>();
     6     first.add(1);
     7     res.add(first);
     8     for (int i = 2; i <= numRows; i++)
     9     {
    10         List<Integer> list = new ArrayList<>();
    11         List<Integer> preList = res.get(i-2);
    12         for (int j = 0; j < i; j++)
    13         {
    14             if (j == 0)
    15                 list.add(1);
    16             else if (j == i-1)
    17                 list.add(1);
    18             else
    19             {
    20                 list.add(preList.get(j-1)+preList.get(j));
    21             }
    22         }
    23         res.add(list);
    24     }
    25     return res;
    26 }
    43、Pascal's Triangle II: 生成第k个杨辉三角
     1 public List<Integer> getRow(int rowIndex) {
     2     List<Integer> res = new ArrayList<>();
     3     if (rowIndex < 0)
     4         return res;
     5 
     6     for (int i = 0; i <= rowIndex; i++)
     7     {
     8         res.add(0, 1);
     9         for (int j = 1; j < res.size()-1; j++)
    10         {
    11             res.set(j, res.get(j)+res.get(j+1));
    12         }
    13     }
    14     return res;
    15 }
     
    44、Triangle: 求最短路径
     
     1 public int minimumTotal(List<List<Integer>> triangle) {
     2     if (triangle == null || triangle.size() == 0)
     3         return 0;
     4 
     5     int [] sum = new int[triangle.size()];
     6     for (int i = 0; i < triangle.size(); i++)
     7         sum[i] = triangle.get(triangle.size()-1).get(i);
     8 
     9     for (int i = triangle.size()-2; i >= 0; i--)
    10     {
    11         for (int j = 0; j <= i; j++)
    12             sum[j] = Math.min(sum[j], sum[j+1]) + triangle.get(i).get(j);
    13     }
    14     return sum[0];
    15 
    16 }
    45、Best Time to Buy and Sell Stock:
     
    46、Best Time to Buy and Sell Stock II:
     
    47、Best Time to Buy and Sell Stock III:
     
    48、Word Ladder II:
     
    49、Longest Consecutive Sequence:
     
    50、Maximum Product Subarray:
     
    51、Find Minimum in Rotated Sorted Array:
     
    52、Find Minimum in Rotated Sorted Array II:
     
    53、Find Peak Element:
     
    54、Missing Ranges:
     
    55、Two Sum II - Input array is sorted:
     
    56、Majority Element:
     
    57、Rotate Array:
     
    58、Minimum Size Subarray Sum:
     
    59、Combination Sum III:给定数k和n,求所有的k个数之和等于n的集合,其中k个数中不允许重复的数,并且数字大小为1到9。回溯法
     
     1 public List<List<Integer>> combinationSum3(int k, int n)
     2 {
     3     List<List<Integer>> result = new ArrayList<>();
     4     List<Integer> temp = new ArrayList<>();
     5     boolean[] visited = new boolean[10];
     6     helper(k, n, 1, 0, visited, temp, result);
     7     return result;
     8 }
     9 public void helper(int k, int n, int start, int sum, boolean[] visited, List<Integer> temp, List<List<Integer>> res)
    10 {
    11     if (sum == n && temp.size() == k){
    12         res.add(new ArrayList<>(temp));
    13         return;
    14     }
    15     if (sum > n || temp.size() > k) return;
    16     for (int i = start; i < 10; i++){
    17         if (visited[i])
    18             continue;
    19         if (temp.size() > 0 && temp.get(temp.size()-1) > i)
    20             continue;
    21         temp.add(i);
    22         visited[i] = true;
    23         helper(k, n, start+1, sum+i, visited, temp, res);
    24         temp.remove(temp.size()-1);
    25         visited[i] = false;
    26     }
    27 }

     

    60、Contains Duplicate:
     
    61、Contains Duplicate II:
     
    62、Summary Ranges:
     
    63、Majority Element II:
     
    64、Product of Array Except Self:
     
    65、Shortest Word Distance:
     
    66、Shortest Word Distance III:
     
    67、3Sum Smaller:
     
    68、Missing Number:
     
    69、Find the Celebrity:
     
    70、Wiggle Sort:
     
    71、Move Zeroes:
     
    72、Find the Duplicate Number:
     
    73、Game of Life:
     
    74、Range Addition:
     
    75、Patching Array:给出一个从小到大排好序的整数数组nums和一个整数n,在数组中添加若干个补丁(元素)使得[1,n]的区间内的所有数都可以表示成nums中若干个数的和。返回最少需要添加的补丁个数。
     1 public class Solution {
     2     /**
     3     定义一个当前数字i之前的数组合能到达的最小上界minUpper,如表示的数范围是1-m,则定义上界为minUpper=m+1
     4     循环如下:
     5     上界minUpper <= N:
     6         如果当前数字i <= minUpper:
     7             更新上界:minUpper = minUpper + i
     8         如果当前数字i > minUpper:说明需要添加补丁数字minUpper,并且更新此时的上界minUpper=minUpper+minUpper;
     9     */
    10     public int minPatches(int[] nums, int n) {
    11         int minUpper = 1;
    12         int index = 0;
    13         int missingCounter = 0;
    14         while (minUpper <= n) {
    15             if(index < nums.length && nums[index] <= minUpper) {
    16                 minUpper += nums[index];
    17                 index++;
    18             }
    19             else {
    20                 //System.out.println(minUpper);
    21                 minUpper += minUpper;
    22                 missingCounter ++;
    23             }
    24         }
    25         return missingCounter;
    26     }
    27 }
  • 相关阅读:
    前后端分离的坑
    appscan 对于csrf漏洞扫描的坑
    appscan执行过程
    app scan状态码的坑
    linux修改jdk版本
    软件测试之性能测试
    jmeter 从文件中读取内容 CSV数据文件设置(CSV Data Set Config)
    robotframework基本操作
    robotframework生成随机数
    RobotFramework获取table的行数
  • 原文地址:https://www.cnblogs.com/shizhh/p/5717425.html
Copyright © 2011-2022 走看看