zoukankan      html  css  js  c++  java
  • TensorRT&Sample&Python[end_to_end_tensorflow_mnist]


    本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍。

    1 引言

    假设当前路径为:

    TensorRT-5.0.2.6/samples
    

    其对应当前例子文件目录树为:

    # tree python
    
    python
    ├── common.py
    ├── end_to_end_tensorflow_mnist
    │   ├── model.py
    │   ├── README.md
    │   ├── requirements.txt
    │   └── sample.py
    

    2 基于tensorflow生成模型

    其中只有2个文件:

    • model:该文件包含简单的训练模型代码
    • sample:该文件使用UFF mnist模型去创建一个TensorRT inference engine

    首先介绍下model.py

    # 该脚本包含一个简单的模型训练过程
    import tensorflow as tf
    import numpy as np
    
    
    '''main中第一步:获取数据集 '''
    def process_dataset():
    
        # 导入mnist数据集
        # 手动下载aria2c -x 16 https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
        # 将mnist.npz移动到~/.keras/datasets/
        #  tf.keras.datasets.mnist.load_data会去读取~/.keras/datasets/mnist.npz,而不从网络下载
        (x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
        x_train, x_test = x_train / 255.0, x_test / 255.0
    
        # Reshape 
        NUM_TRAIN = 60000
        NUM_TEST = 10000
        x_train = np.reshape(x_train, (NUM_TRAIN, 28, 28, 1))
        x_test = np.reshape(x_test, (NUM_TEST, 28, 28, 1))
        return x_train, y_train, x_test, y_test
    
    
    '''main中第二步:构建模型 '''
    def create_model():
    
        model = tf.keras.models.Sequential()
        model.add(tf.keras.layers.InputLayer(input_shape=[28,28, 1]))
        model.add(tf.keras.layers.Flatten())
        model.add(tf.keras.layers.Dense(512, activation=tf.nn.relu))
        model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))
        model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
        return model
    
    
    '''main中第五步:模型存储 '''
    def save(model, filename):
    
        output_names = model.output.op.name
        sess = tf.keras.backend.get_session()
    
        # freeze graph
        frozen_graph = tf.graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), [output_names])
    
        # 移除训练的节点
        frozen_graph = tf.graph_util.remove_training_nodes(frozen_graph)
    
        # 保存模型
        with open(filename, "wb") as ofile:
            ofile.write(frozen_graph.SerializeToString())
    
    
    def main():
    
        ''' 1 - 获取数据'''
        x_train, y_train, x_test, y_test = process_dataset()
    
        ''' 2 - 构建模型'''
        model = create_model()
    
        ''' 3 - 模型训练'''
        model.fit(x_train, y_train, epochs = 5, verbose = 1)
    
        ''' 4 - 模型评估'''
        model.evaluate(x_test, y_test)
    
        ''' 5 - 模型存储'''
        save(model, filename="models/lenet5.pb")
    
    if __name__ == '__main__':
        main()
    

    在获得

    models/lenet5.pb
    

    之后,执行下述命令,将其转换成uff文件,输出结果如

    '''该converter会显示关于input/output nodes的信息,这样你就可以用来在解析的时候进行注册;
    本例子中,我们基于tensorflow.keras的命名规则,事先已知input/output nodes名称了 '''
    
    [root@30d4bceec4c4 end_to_end_tensorflow_mnist]# convert-to-uff models/lenet5.pb
    Loading models/lenet5.pb
    

    3 基于tensorflow的pb文件生成UFF并处理

    # 该例子使用UFF MNIST 模型去创建一个TensorRT Inference Engine
    from random import randint
    from PIL import Image
    import numpy as np
    
    import pycuda.driver as cuda
    import pycuda.autoinit # 该import会让pycuda自动管理CUDA上下文的创建和清理工作
    
    import tensorrt as trt
    
    import sys, os
    # sys.path.insert(1, os.path.join(sys.path[0], ".."))
    # import common
    
    # 这里将common中的GiB和find_sample_data,allocate_buffers,do_inference等函数移动到该py文件中,保证自包含。
    def GiB(val):
        '''以GB为单位,计算所需要的存储值,向左位移10bit表示KB,20bit表示MB '''
        return val * 1 << 30
    
    def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[]):
        '''该函数就是一个参数解析函数。
        Parses sample arguments.
        Args:
            description (str): Description of the sample.
            subfolder (str): The subfolder containing data relevant to this sample
            find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path.
        Returns:
            str: Path of data directory.
        Raises:
            FileNotFoundError
        '''
        # 为了简洁,这里直接将路径硬编码到代码中。
        data_root = kDEFAULT_DATA_ROOT = os.path.abspath("/TensorRT-5.0.2.6/python/data/")
    
        subfolder_path = os.path.join(data_root, subfolder)
        if not os.path.exists(subfolder_path):
            print("WARNING: " + subfolder_path + " does not exist. Using " + data_root + " instead.")
        data_path = subfolder_path if os.path.exists(subfolder_path) else data_root
    
        if not (os.path.exists(data_path)):
            raise FileNotFoundError(data_path + " does not exist.")
    
        for index, f in enumerate(find_files):
            find_files[index] = os.path.abspath(os.path.join(data_path, f))
            if not os.path.exists(find_files[index]):
                raise FileNotFoundError(find_files[index] + " does not exist. ")
    
        if find_files:
            return data_path, find_files
        else:
            return data_path
    #-----------------
    
    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
    
    class ModelData(object):
        MODEL_FILE = os.path.join(os.path.dirname(__file__), "models/lenet5.uff")
        INPUT_NAME ="input_1"
        INPUT_SHAPE = (1, 28, 28)
        OUTPUT_NAME = "dense_1/Softmax"
    
    
    '''main中第二步:构建engine'''
    def build_engine(model_file):
    
        with trt.Builder(TRT_LOGGER) as builder, 
                builder.create_network() as network, 
                trt.UffParser() as parser:
    
            builder.max_workspace_size = GiB(1)
    
            # 解析 Uff 网络
            parser.register_input(ModelData.INPUT_NAME, ModelData.INPUT_SHAPE)
            parser.register_output(ModelData.OUTPUT_NAME)
            parser.parse(model_file, network)
    
            # 构建并返回一个engine
            return builder.build_cuda_engine(network)
    
    
    '''main中第三步 '''
    def allocate_buffers(engine):
    
        inputs = []
        outputs = []
        bindings = []
        stream = cuda.Stream()
    
        for binding in engine:
    
            size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
            dtype = trt.nptype(engine.get_binding_dtype(binding))
    
            # 分配host和device端的buffer
            host_mem = cuda.pagelocked_empty(size, dtype)
            device_mem = cuda.mem_alloc(host_mem.nbytes)
    
            # 将device端的buffer追加到device的bindings.
            bindings.append(int(device_mem))
    
            # Append to the appropriate list.
            if engine.binding_is_input(binding):
                inputs.append(HostDeviceMem(host_mem, device_mem))
            else:
                outputs.append(HostDeviceMem(host_mem, device_mem))
    
        return inputs, outputs, bindings, stream
    
    
    '''main中第四步 '''
    # 从pagelocked_buffer.中读取测试样本
    def load_normalized_test_case(data_path, pagelocked_buffer, case_num=randint(0, 9)):
    
        test_case_path = os.path.join(data_path, str(case_num) + ".pgm")
    
        # Flatten该图像成为一个1维数组,然后归一化,并copy到host端的 pagelocked内存中.
        img = np.array(Image.open(test_case_path)).ravel()
        np.copyto(pagelocked_buffer, 1.0 - img / 255.0)
    
        return case_num
    
    
    '''main中第五步:执行inference '''
    # 该函数可以适应多个输入/输出;输入和输出格式为HostDeviceMem对象组成的列表
    def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
    
        # 将数据移动到GPU
        [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    
        # 执行inference.
        context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
    
        # 将结果从 GPU写回到host端
        [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    
        # 同步stream
        stream.synchronize()
    
        # 返回host端的输出结果
        return [out.host for out in outputs]
    
    
    def main():
    
        ''' 1 - 寻找模型文件'''
        data_path = find_sample_data(
                                  description="Runs an MNIST network using a UFF model file", 
                                  subfolder="mnist")
        model_file = ModelData.MODEL_FILE
    
        ''' 2 - 基于build_engine函数构建engine'''
        with build_engine(model_file) as engine:
    
            ''' 3 - 分配buffer并创建一个流'''
            inputs, outputs, bindings, stream = allocate_buffers(engine)
           
            with engine.create_execution_context() as context:
    
                ''' 4 - 读取测试样本,并归一化'''
                case_num = load_normalized_test_case(data_path, pagelocked_buffer=inputs[0].host)
    
                ''' 5 - 执行inference,do_inference函数会返回一个list类型,此处只有一个元素'''
                [output] = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
    
                pred = np.argmax(output)
                print("Test Case: " + str(case_num))
                print("Prediction: " + str(pred))
    
    if __name__ == '__main__':
        main()
    

    结果如:

  • 相关阅读:
    C语言的特点与缺点
    C语言的特点与缺点
    HDU1234 开门人和关门人
    HDU1234 开门人和关门人
    B00014 C++实现的AC自动机
    B00014 C++实现的AC自动机
    HDU4716 A Computer Graphics Problem
    HDU4716 A Computer Graphics Problem
    I00029 C语言程序-打印九九乘法表
    I00029 C语言程序-打印九九乘法表
  • 原文地址:https://www.cnblogs.com/shouhuxianjian/p/10525000.html
Copyright © 2011-2022 走看看