zoukankan      html  css  js  c++  java
  • TensorRT&Sample&Python[network_api_pytorch_mnist]


    本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍。
    本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未dump该权重;接着基于tensorrt的network进行手动设计网络结构并填充权重。本文核心在于介绍network api的使用

    1 引言

    假设当前路径为:

    TensorRT-5.0.2.6/samples
    

    其对应当前例子文件目录树为:

    # tree python
    
    python
    ├── common.py
    ├── network_api_pytorch_mnist
    │   ├── model.py
    │   ├── README.md
    │   ├── requirements.txt
    │   └── sample.py
    

    2 基于pytorch

    其中只有2个文件:

    • model:该文件包含用于训练Pytorch MNIST 模型的函数
    • sample:该文件使用Pytorch生成的mnist模型去创建一个TensorRT inference engine

    首先介绍下model.py

    首先下载对应的mnist数据,并放到对应缓存路径下:

    '''
    i) 去http://yann.lecun.com/exdb/mnist/index.html  下载四个
    ii) 放到/tmp/mnist/data/MNIST/raw/
     '''
    
    /tmp/mnist/data/MNIST/raw
    ├── t10k-images-idx3-ubyte.gz
    ├── t10k-labels-idx1-ubyte.gz
    ├── train-images-idx3-ubyte.gz
    └── train-labels-idx1-ubyte.gz
    

    这样加快model.py读取mnist数据的速度

    # 该文件包含用于训练Pytorch MNIST模型的函数
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    from torch.autograd import Variable
    
    import numpy as np
    import os
    
    from random import randint
    
    # Network结构,2层卷积+dropout+一层全连接+一层softmax
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
            self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(800, 500)
            self.fc2 = nn.Linear(500, 10)
    
        def forward(self, x):
            x = F.max_pool2d(self.conv1(x), kernel_size=2, stride=2)
            x = F.max_pool2d(self.conv2(x), kernel_size=2, stride=2)
            x = x.view(-1, 800)
            x = F.relu(self.fc1(x))
            x = self.fc2(x)
            return F.log_softmax(x, dim=1)
    
    
    class MnistModel(object):
        ''' 初始化'''
        def __init__(self):
            self.batch_size = 64
            self.test_batch_size = 100
            self.learning_rate = 0.01
            self.sgd_momentum = 0.9
            self.log_interval = 100
    
            # Fetch MNIST data set.
            # 训练时候的数据读取
            self.train_loader = torch.utils.data.DataLoader(
                datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize((0.1307,), (0.3081,))
                    ])),
                batch_size=self.batch_size,
                shuffle=True)
    
            # 测试时候的数据读取
            self.test_loader = torch.utils.data.DataLoader(
                datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize((0.1307,), (0.3081,))
                    ])),
                batch_size=self.test_batch_size,
                shuffle=True)
    
            # 网络结构实例化
            self.network = Net()
    
    
        ''' 训练该网络,然后每个epoch之后进行验证.'''
        def learn(self, num_epochs=5):
    
            # 每个epoch的训练过程
            def train(epoch):
    
                self.network.train()  # 开启训练flag
                optimizer = optim.SGD(self.network.parameters(), lr=self.learning_rate, momentum=self.sgd_momentum)
    
                for batch, (data, target) in enumerate(self.train_loader):
                    data, target = Variable(data), Variable(target)
                    optimizer.zero_grad()
                    output = self.network(data)   # 一次前向
                    loss = F.nll_loss(output, target)  # 计算loss
                    loss.backward()  # 反向计算梯度
                    optimizer.step()
    
                    if batch % self.log_interval == 0:
                        print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                                                epoch, 
                                                batch * len(data), 
                                                len(self.train_loader.dataset), 
                                                100. * batch / len(self.train_loader), 
                                                loss.data.item()))
    
            # 测试该网络
            def test(epoch):
    
                self.network.eval() # 开启验证flag
                test_loss = 0
                correct = 0
    
                for data, target in self.test_loader:
                    with torch.no_grad():
                        data, target = Variable(data), Variable(target)
                    output = self.network(data)  # 前向
                    test_loss += F.nll_loss(output, target).data.item() # 累加loss值
                    pred = output.data.max(1)[1]  # 计算当次预测值
                    correct += pred.eq(target.data).cpu().sum() # 累加预测正确的
    
                test_loss /= len(self.test_loader)
                print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '.format(
                                                 test_loss, 
                                                 correct, 
                                                 len(self.test_loader.dataset), 
                                                100. * correct / len(self.test_loader.dataset)))
    
            # 调用上面定义好的训练函数和测试函数
            for e in range(num_epochs):
                train(e + 1)
                test(e + 1)
    
        ''' 可视化权重'''
        def get_weights(self):
            return self.network.state_dict()
    
        ''' 随机获取 测试样本队列中 样本 '''
        def get_random_testcase(self):
            data, target = next(iter(self.test_loader))
            case_num = randint(0, len(data) - 1)
            test_case = data.numpy()[case_num].ravel().astype(np.float32)
            test_name = target.numpy()[case_num]
            return test_case, test_name
    
    

    可以看出,上面的代码就是定义了网络结构,和训练网络的函数方法。下面介绍下sample.py

    # 该例子用pytorch编写的MNIST模型去生成一个TensorRT Inference Engine
    from PIL import Image
    import numpy as np
    
    import pycuda.driver as cuda
    import pycuda.autoinit
    
    import tensorrt as trt
    
    import sys, os
    sys.path.insert(1, os.path.join(sys.path[0], ".."))
    import model
    
    
    # import common
    # 这里将common中的GiB和find_sample_data,do_inference等函数移动到该py文件中,保证自包含。
    def GiB(val):
        '''以GB为单位,计算所需要的存储值,向左位移10bit表示KB,20bit表示MB '''
        return val * 1 << 30
    
    def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[]):
        '''该函数就是一个参数解析函数。
        Parses sample arguments.
        Args:
            description (str): Description of the sample.
            subfolder (str): The subfolder containing data relevant to this sample
            find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path.
        Returns:
            str: Path of data directory.
        Raises:
            FileNotFoundError
        '''
        # 为了简洁,这里直接将路径硬编码到代码中。
        data_root = kDEFAULT_DATA_ROOT = os.path.abspath("/TensorRT-5.0.2.6/python/data/")
    
        subfolder_path = os.path.join(data_root, subfolder)
        if not os.path.exists(subfolder_path):
            print("WARNING: " + subfolder_path + " does not exist. Using " + data_root + " instead.")
        data_path = subfolder_path if os.path.exists(subfolder_path) else data_root
    
        if not (os.path.exists(data_path)):
            raise FileNotFoundError(data_path + " does not exist.")
    
        for index, f in enumerate(find_files):
            find_files[index] = os.path.abspath(os.path.join(data_path, f))
            if not os.path.exists(find_files[index]):
                raise FileNotFoundError(find_files[index] + " does not exist. ")
    
        if find_files:
            return data_path, find_files
        else:
            return data_path
    #-----------------
    
    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
    
    class ModelData(object):
        INPUT_NAME = "data"
        INPUT_SHAPE = (1, 28, 28)
        OUTPUT_NAME = "prob"
        OUTPUT_SIZE = 10
        DTYPE = trt.float32
    
    
    '''main中第三步:构建engine'''
    # 该函数构建的网络结构和上面model.py中一致,只是这里通过训练后的网络模型读取对应的权重值,并填充到network中
    # network是TensorRT提供的,weights是Pytorch训练后的模型提供的
    def populate_network(network, weights):
     
        '''network支持的方法来自https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html '''
        # 基于提供的权重配置网络层
        input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE)
    
        conv1_w = weights['conv1.weight'].numpy()
        conv1_b = weights['conv1.bias'].numpy()
        conv1 = network.add_convolution(input=input_tensor, num_output_maps=20, kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b)
        conv1.stride = (1, 1)
    
        pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
        pool1.stride = (2, 2)
    
        conv2_w = weights['conv2.weight'].numpy()
        conv2_b = weights['conv2.bias'].numpy()
        conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
        conv2.stride = (1, 1)
    
        pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
        pool2.stride = (2, 2)
    
        fc1_w = weights['fc1.weight'].numpy()
        fc1_b = weights['fc1.bias'].numpy()
        fc1 = network.add_fully_connected(input=pool2.get_output(0), num_outputs=500, kernel=fc1_w, bias=fc1_b)
    
        relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU)
    
        fc2_w = weights['fc2.weight'].numpy()
        fc2_b = weights['fc2.bias'].numpy()
        fc2 = network.add_fully_connected(relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b)
    
        fc2.get_output(0).name = ModelData.OUTPUT_NAME
        network.mark_output(tensor=fc2.get_output(0))
    
    
    '''main中第三步:构建engine'''
    def build_engine(weights):
    
        '''下面的create_network会返回一个tensorrt.tensorrt.INetworkDefinition对象
         https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Core/Builder.html?highlight=create_network#tensorrt.Builder.create_network 
        '''
    
        with trt.Builder(TRT_LOGGER) as builder, 
               builder.create_network() as network:
    
            builder.max_workspace_size = GiB(1)
    
            populate_network(network, weights)   # 用之前的pytorch模型中的权重来填充network
    
            # 构建并返回一个engine.
            return builder.build_cuda_engine(network)
    
    
    '''main中第四步:分配buffer '''
    def allocate_buffers(engine):
    
        inputs = []
        outputs = []
        bindings = []
        stream = cuda.Stream()
    
        for binding in engine:
    
            size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
            dtype = trt.nptype(engine.get_binding_dtype(binding))
    
            # 分配host和device端的buffer
            host_mem = cuda.pagelocked_empty(size, dtype)
            device_mem = cuda.mem_alloc(host_mem.nbytes)
    
            # 将device端的buffer追加到device的bindings.
            bindings.append(int(device_mem))
    
            # Append to the appropriate list.
            if engine.binding_is_input(binding):
                inputs.append(HostDeviceMem(host_mem, device_mem))
            else:
                outputs.append(HostDeviceMem(host_mem, device_mem))
    
        return inputs, outputs, bindings, stream
    
    
    '''main中第五步:选择测试样本 '''
    # 用pytorch的DataLoader随机选择一个测试样本
    def load_random_test_case(model, pagelocked_buffer):
    
        img, expected_output = model.get_random_testcase()
    
        # 将图片copy到host端的pagelocked buffer
        np.copyto(pagelocked_buffer, img)
    
        return expected_output
    
    
    '''main中第六步:执行inference '''
    # 该函数可以适应多个输入/输出;输入和输出格式为HostDeviceMem对象组成的列表
    def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
    
        # 将数据移动到GPU
        [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    
        # 执行inference.
        context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
    
        # 将结果从 GPU写回到host端
        [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    
        # 同步stream
        stream.synchronize()
    
        # 返回host端的输出结果
        return [out.host for out in outputs]
    
    
    def main():
    
        ''' 1 - 寻找模型文件,不过次例中未用到该返回值'''
        data_path = find_sample_data(description="Runs an MNIST network using a PyTorch model", subfolder="mnist")
    
        ''' 2 - 训练该模型'''
        mnist_model = model.MnistModel() 
        mnist_model.learn()
    
        # 获取训练好的权重
        weights = mnist_model.get_weights()
    
        ''' 3 - 基于build_engine构建engine;用tensorrt来进行inference '''
        with build_engine(weights) as engine:
    
            ''' 4 - 构建engine, 分配buffers, 创建一个流 '''
            inputs, outputs, bindings, stream = allocate_buffers(engine)
    
            with engine.create_execution_context() as context:
    
                ''' 5 - 读取测试样本,并归一化'''
                case_num = load_random_test_case(mnist_model, pagelocked_buffer=inputs[0].host)
    
                ''' 6 -执行inference,do_inference函数会返回一个list类型,此处只有一个元素 '''
                [output] = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
                pred = np.argmax(output)
    
                print("Test Case: " + str(case_num))
                print("Prediction: " + str(pred))
    
    if __name__ == '__main__':
        main()
    
    

    运行结果如下:

  • 相关阅读:
    关于npm无法安装依赖包以及安装包缓慢的解决方法
    centos 上安装nodejs v8.0.0
    nginx 负载均衡
    关于前端
    递归函数
    多重循环
    闭包
    spring boot集成mybatis(2)
    spring boot集成mybatis(3)
    spring boot集成mybatis(1)
  • 原文地址:https://www.cnblogs.com/shouhuxianjian/p/10525895.html
Copyright © 2011-2022 走看看