zoukankan      html  css  js  c++  java
  • TensorRT&Sample&Python[fc_plugin_caffe_mnist]


    本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍。
    本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多。该例子展示如何使用基于cpp写的plugin,用tensorrt python 绑定接口和caffe解析器一起工作的过程。该例子使用cuBLAS和cuDNn实现一个全连接层,然后实现成tensorrt plugin,然后用pybind11生成对应python绑定,这些绑定随后被用来注册为caffe解析器的一部分。

    1 引言

    假设当前路径为:

    TensorRT-5.0.2.6/samples
    

    其对应当前例子文件目录树为:

    # tree python
    
    python
    ├── common.py
    ├── fc_plugin_caffe_mnist
    │   ├── CMakeLists.txt
    │   ├── __init__.py
    │   ├── plugin
    │   │   ├── FullyConnected.h
    │   │   └── pyFullyConnected.cpp
    │   ├── README.md
    │   ├── requirements.txt
    │   └── sample.py
    

    其中:

    • plugin包含FullyConnected 层的plugin:
    • FullyConnected.h 基于CUDA,cuDNN,cuBLAS实现该插件;
    • pyFullyConnected.cpp 生成关于FCPlugin和FCPluginFactory插件的python绑定;
    • sample.py 使用提供的FullyConnected 层插件运行MNIST网络;

    2 安装依赖

    git clone -b v2.2.3 https://github.com/pybind/pybind11.git
    
    • 安装python包:
    Pillow
    pycuda
    numpy
    argparse
    

    3 编译该插件

    • 创建build文件夹,然后进入该文件夹
    mkdir build && pushd build
    
    • cmake生成对应Makefile,此处可以自由设定一些参数。如果其中有些依赖不在默认位置路径上,可以cmake手动指定,关于Cmake的文档,可参考
    cmake .. -DCUDA_ROOT=/usr/local/cuda-9.0 
             -DPYBIND11_DIR=/root/pybind11/ 
             -DPYTHON3_INC_DIR=/usr/local/python3/include/python3.5m/ 
             -DNVINFER_LIB=/TensorRT-5.0.2.6/lib/libnvinfer.so  
             -D_NVINFER_PLUGIN_LIB=/TensorRT-5.0.2.6/lib/ 
             -D_NVPARSERS_LIB=/TensorRT-5.0.2.6/lib 
             -DTRT_INC_DIR=/TensorRT-5.0.2.6/include/
    

    注意cmake打出的日志中的VARIABLE_NAME-NOTFOUND

    • 进行编译
    make -j32
    
    • 跳出build
    popd
    

    4 代码解析

    首先,按上面编译过程所述,在build文件夹中会需要调用cmake命令,而该命令会读取上一层,也就是CMakeLists.txt,
    其中关于find_library, include_directories, add_subdirectory的可以参考cmake-command文档

    cmake_minimum_required(VERSION 3.2 FATAL_ERROR) # 最小cmake版本限定
    project(FCPlugin LANGUAGES CXX C) # 项目名称和对应的编程语言
    
    # 设定一个宏set_ifndef,用于操作当变量未找到时的行为:此处将未找到变量var 设定为val
    macro(set_ifndef var val)
        if(NOT ${var})
            set(${var} ${val})
        endif()
        message(STATUS "Configurable variable ${var} set to ${${var}}")
    endmacro()
    
    # -------- CONFIGURATION --------
    # Set module name here. MUST MATCH the module name specified in the .cpp
    set_ifndef(PY_MODULE_NAME fcplugin) 
    set(CMAKE_CXX_STANDARD 11) # 设定C++11标注
    set(PYBIND11_CPP_STANDARD -std=c++11) # pybind11 defaults to c++14.
    
    set_ifndef(PYBIND11_DIR $ENV{HOME}/pybind11/)
    set_ifndef(CUDA_VERSION 10.0)
    set_ifndef(CUDA_ROOT /usr/local/cuda-${CUDA_VERSION})
    set_ifndef(CUDNN_ROOT ${CUDA_ROOT})
    set_ifndef(PYTHON_ROOT /usr/include)
    set_ifndef(TRT_LIB_DIR /usr/lib/x86_64-linux-gnu)
    set_ifndef(TRT_INC_DIR /usr/include/x86_64-linux-gnu)
    
    # 寻找依赖
    message("
    The following variables are derived from the values of the previous variables unless provided explicitly:
    ")
    
    find_path(_CUDA_INC_DIR cuda_runtime_api.h HINTS ${CUDA_ROOT} PATH_SUFFIXES include)
    set_ifndef(CUDA_INC_DIR ${_CUDA_INC_DIR})
    
    find_library(_CUDA_LIB cudart HINTS ${CUDA_ROOT} PATH_SUFFIXES lib lib64)
    set_ifndef(CUDA_LIB ${_CUDA_LIB})
    
    find_library(_CUBLAS_LIB cublas HINTS ${CUDA_ROOT} PATH_SUFFIXES lib lib64)
    set_ifndef(CUBLAS_LIB ${_CUBLAS_LIB})
    
    find_path(_CUDNN_INC_DIR cudnn.h HINTS ${CUDNN_ROOT} PATH_SUFFIXES include x86_64-linux-gnu)
    set_ifndef(CUDNN_INC_DIR ${_CUDNN_INC_DIR})
    
    find_library(_CUDNN_LIB cudnn HINTS ${CUDNN_ROOT} PATH_SUFFIXES lib lib64 x86_64-linux-gnu)
    set_ifndef(CUDNN_LIB ${_CUDNN_LIB})
    
    find_library(_TRT_INC_DIR NvInfer.h HINTS ${TRT_INC_DIR} PATH_SUFFIXES include x86_64-linux-gnu)
    set_ifndef(TRT_INC_DIR ${_TRT_INC_DIR})
    
    find_library(_NVINFER_LIB nvinfer HINTS ${TRT_LIB_DIR} PATH_SUFFIXES lib lib64 x86_64-linux-gnu)
    set_ifndef(NVINFER_LIB ${_NVINFER_LIB})
    
    find_library(_NVPARSERS_LIB nvparsers HINTS ${TRT_LIB_DIR} PATH_SUFFIXES lib lib64 x86_64-linux-gnu)
    set_ifndef(NVPARSERS_LIB ${_NVPARSERS_LIB})
    
    find_library(_NVINFER_PLUGIN_LIB nvinfer_plugin HINTS ${TRT_LIB_DIR} PATH_SUFFIXES lib lib64 x86_64-linux-gnu)
    set_ifndef(NVINFER_PLUGIN_LIB ${_NVINFER_PLUGIN_LIB})
    
    find_path(_PYTHON2_INC_DIR Python.h HINTS ${PYTHON_ROOT} PATH_SUFFIXES python2.7)
    set_ifndef(PYTHON2_INC_DIR ${_PYTHON2_INC_DIR})
    
    find_path(_PYTHON3_INC_DIR Python.h HINTS ${PYTHON_ROOT} PATH_SUFFIXES python3.7 python3.6 python3.5 python3.4)
    set_ifndef(PYTHON3_INC_DIR ${_PYTHON3_INC_DIR})
    
    # -------- BUILDING --------
    
    # 增加include文件夹路径
    include_directories(${TRT_INC_DIR} ${CUDA_INC_DIR} ${CUDNN_INC_DIR} ${PYBIND11_DIR}/include/)
    
    # CMAKE_BINARY_DIR:表示build的根路径,这里是在build文件夹增加pybind11文件夹
    add_subdirectory(${PYBIND11_DIR} ${CMAKE_BINARY_DIR}/pybind11)
    
    # CMAKE_SOURCE_DIR:表示项目的根路径
    file(GLOB_RECURSE SOURCE_FILES ${CMAKE_SOURCE_DIR}/plugin/*.cpp)
    
    # Bindings library. The module name MUST MATCH the module name specified in the .cpp
    # 是否支持python3
    if(PYTHON3_INC_DIR AND NOT (${PYTHON3_INC_DIR} STREQUAL "None"))
        pybind11_add_module(${PY_MODULE_NAME} SHARED THIN_LTO ${SOURCE_FILES})
        target_include_directories(${PY_MODULE_NAME} BEFORE PUBLIC ${PYTHON3_INC_DIR})
        target_link_libraries(${PY_MODULE_NAME} PRIVATE ${CUDNN_LIB} ${CUDA_LIB} ${CUBLAS_LIB} ${NVINFER_LIB} ${NVPARSERS_LIB} ${NVINFER_PLUGIN_LIB})
    endif()
    
    # 是否支持python2
    if(PYTHON2_INC_DIR AND NOT (${PYTHON2_INC_DIR} STREQUAL "None"))
        # Suffix the cmake target name with a 2 to differentiate from the Python 3 bindings target.
        pybind11_add_module(${PY_MODULE_NAME}2 SHARED THIN_LTO ${SOURCE_FILES})
        target_include_directories(${PY_MODULE_NAME}2 BEFORE PUBLIC ${PYTHON2_INC_DIR})
        target_link_libraries(${PY_MODULE_NAME}2 PRIVATE ${CUDNN_LIB} ${CUDA_LIB} ${CUBLAS_LIB} ${NVINFER_LIB} ${NVPARSERS_LIB} ${NVINFER_PLUGIN_LIB})
        # Rename to remove the .cpython-35... extension.
        set_target_properties(${PY_MODULE_NAME}2 PROPERTIES OUTPUT_NAME ${PY_MODULE_NAME} SUFFIX ".so")
        # Python 2 requires an empty __init__ file to be able to import.
        file(WRITE ${CMAKE_BINARY_DIR}/__init__.py "")
    endif()
    
    

    运行结果如图:

    现在来看FullyConnected.h,因为长期不写cpp,所以对cpp代码都生疏了

    #ifndef _FULLY_CONNECTED_H_
    #define _FULLY_CONNECTED_H_
    
    #include <cassert>
    #include <cstring>
    #include <cuda_runtime_api.h>
    #include <cudnn.h>
    #include <cublas_v2.h>
    #include <stdexcept>
    
    #include "NvInfer.h" //在路径 /TensorRT-5.0.2.6/include/
    #include "NvCaffeParser.h" //在路径 /TensorRT-5.0.2.6/include/
    
    #define CHECK(status) { if (status != 0) throw std::runtime_error(__FILE__ +  __LINE__ + std::string{"CUDA Error: "} + std::to_string(status)); }
    
    // 将数据从host移动到device
    nvinfer1::Weights copyToDevice(const void* hostData, int count)
    {
    	void* deviceData;
    	CHECK(cudaMalloc(&deviceData, count * sizeof(float)));
    	CHECK(cudaMemcpy(deviceData, hostData, count * sizeof(float), cudaMemcpyHostToDevice));
    	return nvinfer1::Weights{nvinfer1::DataType::kFLOAT, deviceData, count};
    }
    
    //将数据从device移动到host
    int copyFromDevice(char* hostBuffer, nvinfer1::Weights deviceWeights)
    {
    	*reinterpret_cast<int*>(hostBuffer) = deviceWeights.count;
    	CHECK(cudaMemcpy(hostBuffer + sizeof(int), deviceWeights.values, deviceWeights.count * sizeof(float), cudaMemcpyDeviceToHost));
    	return sizeof(int) + deviceWeights.count * sizeof(float);
    }
    //-----------------------------
    
    /*建立FCPlugin类*/
    class FCPlugin: public nvinfer1::IPluginExt
    {
    public:
    	// In this simple case we're going to infer the number of output channels from the bias weights.
    	// The knowledge that the kernel weights are weights[0] and the bias weights are weights[1] was
    	// divined from the caffe innards
    	FCPlugin(const nvinfer1::Weights* weights, int nbWeights)
    	{
    		assert(nbWeights == 2);
    		mKernelWeights = copyToDevice(weights[0].values, weights[0].count);
    		mBiasWeights = copyToDevice(weights[1].values, weights[1].count);
    	}
    
    	// 构造函数,用于从一个字节流中创建plugin
    	FCPlugin(const void* data, size_t length)
    	{
    		const char* d = reinterpret_cast<const char*>(data), *a = d;
    		mKernelWeights = copyToDevice(d + sizeof(int), reinterpret_cast<const int&>(d));
    		d += sizeof(int) + mKernelWeights.count * sizeof(float);
    		mBiasWeights = copyToDevice(d + sizeof(int), reinterpret_cast<const int&>(d));
    		d += sizeof(int) + mBiasWeights.count * sizeof(float);
    		assert(d == a + length);
    	}
    
    	virtual int getNbOutputs() const override { return 1; }
    
    	virtual nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs, int nbInputDims) override
    	{
    		assert(index == 0 && nbInputDims == 1 && inputs[0].nbDims == 3);
    		return nvinfer1::DimsCHW{static_cast<int>(mBiasWeights.count), 1, 1};
    	}
    
    	virtual int initialize() override
    	{
    		CHECK(cudnnCreate(&mCudnn));
    		CHECK(cublasCreate(&mCublas));
    		// Create cudnn tensor descriptors for bias addition.
    		CHECK(cudnnCreateTensorDescriptor(&mSrcDescriptor));
    		CHECK(cudnnCreateTensorDescriptor(&mDstDescriptor));
    		return 0;
    	}
    
    	virtual void terminate() override
    	{
    		CHECK(cudnnDestroyTensorDescriptor(mSrcDescriptor));
    		CHECK(cudnnDestroyTensorDescriptor(mDstDescriptor));
    		CHECK(cublasDestroy(mCublas));
    		CHECK(cudnnDestroy(mCudnn));
    	}
    
        // This plugin requires no workspace memory during build time.
    	virtual size_t getWorkspaceSize(int maxBatchSize) const override { return 0; }
    
    	virtual int enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) override
    	{
    		int nbOutputChannels = mBiasWeights.count;
    		int nbInputChannels = mKernelWeights.count / nbOutputChannels;
    		constexpr float kONE = 1.0f, kZERO = 0.0f;
    		// Do matrix multiplication.
    		cublasSetStream(mCublas, stream);
    		cudnnSetStream(mCudnn, stream);
    		CHECK(cublasSgemm(mCublas, CUBLAS_OP_T, CUBLAS_OP_N, nbOutputChannels, batchSize, nbInputChannels, &kONE,
    				reinterpret_cast<const float*>(mKernelWeights.values), nbInputChannels,
    				reinterpret_cast<const float*>(inputs[0]), nbInputChannels, &kZERO,
    				reinterpret_cast<float*>(outputs[0]), nbOutputChannels));
            // Add bias.
    		CHECK(cudnnSetTensor4dDescriptor(mSrcDescriptor, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, nbOutputChannels, 1, 1));
    		CHECK(cudnnSetTensor4dDescriptor(mDstDescriptor, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batchSize, nbOutputChannels, 1, 1));
    		CHECK(cudnnAddTensor(mCudnn, &kONE, mSrcDescriptor, mBiasWeights.values, &kONE, mDstDescriptor, outputs[0]));
    		return 0;
    	}
    
    	// For this sample, we'll only support float32 with NCHW.
    	virtual bool supportsFormat(nvinfer1::DataType type, nvinfer1::PluginFormat format) const override
    	{
    		return (type == nvinfer1::DataType::kFLOAT && format == nvinfer1::PluginFormat::kNCHW);
    	}
    
    	void configureWithFormat(const nvinfer1::Dims* inputDims, int nbInputs, const nvinfer1::Dims* outputDims, int nbOutputs, nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize)
    	{
    		assert(nbInputs == 1 && inputDims[0].d[1] == 1 && inputDims[0].d[2] == 1);
    		assert(nbOutputs == 1 && outputDims[0].d[1] == 1 && outputDims[0].d[2] == 1);
    		assert(mKernelWeights.count == inputDims[0].d[0] * inputDims[0].d[1] * inputDims[0].d[2] * mBiasWeights.count);
    	}
    
    	virtual size_t getSerializationSize() override
    	{
    		return sizeof(int) * 2 + mKernelWeights.count * sizeof(float) + mBiasWeights.count * sizeof(float);
    	}
    
    	virtual void serialize(void* buffer) override
    	{
    		char* d = reinterpret_cast<char*>(buffer), *a = d;
    		d += copyFromDevice(d, mKernelWeights);
    		d += copyFromDevice(d, mBiasWeights);
    		assert(d == a + getSerializationSize());
    	}
    
    	// 析构函数,释放buffer.
    	virtual ~FCPlugin()
    	{
    		cudaFree(const_cast<void*>(mKernelWeights.values));
    		mKernelWeights.values = nullptr;
    		cudaFree(const_cast<void*>(mBiasWeights.values));
    		mBiasWeights.values = nullptr;
    	}
    
    private:
    	cudnnHandle_t mCudnn;
    	cublasHandle_t mCublas;
    	nvinfer1::Weights mKernelWeights{nvinfer1::DataType::kFLOAT, nullptr}, mBiasWeights{nvinfer1::DataType::kFLOAT, nullptr};
    	cudnnTensorDescriptor_t mSrcDescriptor, mDstDescriptor;
    };
    
    
    /*建立FCPluginFactory类*/
    class FCPluginFactory : public nvcaffeparser1::IPluginFactoryExt, public nvinfer1::IPluginFactory
    {
    public:
    	bool isPlugin(const char* name) override { return isPluginExt(name); }
    
    	bool isPluginExt(const char* name) override { return !strcmp(name, "ip2"); }
    
        // Create a plugin using provided weights.
    	virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const nvinfer1::Weights* weights, int nbWeights) override
    	{
    		assert(isPluginExt(layerName) && nbWeights == 2);
    		assert(mPlugin == nullptr);
            // This plugin will need to be manually destroyed after parsing the network, by calling destroyPlugin.
    		mPlugin = new FCPlugin{weights, nbWeights};
    		return mPlugin;
    	}
    
        // Create a plugin from serialized data.
    	virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const void* serialData, size_t serialLength) override
    	{
    		assert(isPlugin(layerName));
            // This will be automatically destroyed when the engine is destroyed.
    		return new FCPlugin{serialData, serialLength};
    	}
    
        // User application destroys plugin when it is safe to do so.
        // Should be done after consumers of plugin (like ICudaEngine) are destroyed.
    	void destroyPlugin() { delete mPlugin; }
    
        FCPlugin* mPlugin{ nullptr };
    };
    
    #endif //_FULLY_CONNECTED_H
    

    现在来看pyFullyConnected.cpp该源码中用到了pybind11,关于其文档

    #include "FullyConnected.h"
    #include "NvInfer.h"
    #include "NvCaffeParser.h"
    #include <pybind11/pybind11.h>
    
    PYBIND11_MODULE(fcplugin, m)
    {
        namespace py = pybind11;
    
        // 以python方式导入tensorrt模块.
        py::module::import("tensorrt");
    
        // Note that we only need to bind the constructors manually. Since all other methods override IPlugin functionality, they will be automatically available in the python bindings.
        // The `std::unique_ptr<FCPlugin, py::nodelete>` specifies that Python is not responsible for destroying the object. This is required because the destructor is private.
        py::class_<FCPlugin, nvinfer1::IPluginExt, std::unique_ptr<FCPlugin, py::nodelete>>(m, "FCPlugin")
            // Bind the normal constructor as well as the one which deserializes the plugin
            .def(py::init<const nvinfer1::Weights*, int>())
            .def(py::init<const void*, size_t>())
        ;
    
        // Since the createPlugin function overrides IPluginFactory functionality, we do not need to explicitly bind it here.
        // We specify py::multiple_inheritance because we have not explicitly specified nvinfer1::IPluginFactory as a base class.
        py::class_<FCPluginFactory, nvcaffeparser1::IPluginFactoryExt>(m, "FCPluginFactory", py::multiple_inheritance())
            // Bind the default constructor.
            .def(py::init<>())
            // The destroy_plugin function does not override the base class, so we must bind it explicitly.
            .def("destroy_plugin", &FCPluginFactory::destroyPlugin)
        ;
    }
    

    cpp的代码就先不解释了。。。
    接着分析sample.py

    # This sample uses a Caffe model along with a custom plugin to create a TensorRT engine.
    from random import randint
    from PIL import Image
    import numpy as np
    
    import pycuda.driver as cuda
    import pycuda.autoinit
    
    import tensorrt as trt
    
    try:
        from build import fcplugin
    except ImportError as err:
        raise ImportError("""ERROR: Failed to import module ({})
    Please build the FullyConnected sample plugin.
    For more information, see the included README.md
    Note that Python 2 requires the presence of `__init__.py` in the build folder""".format(err))
    
    import sys, os
    sys.path.insert(1, os.path.join(sys.path[0], ".."))
    # import common
    # 这里将common中的GiB和find_sample_data,do_inference等函数移动到该py文件中,保证自包含。
    def GiB(val):
        '''以GB为单位,计算所需要的存储值,向左位移10bit表示KB,20bit表示MB '''
        return val * 1 << 30
    
    def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[]):
        '''该函数就是一个参数解析函数。
        Parses sample arguments.
        Args:
            description (str): Description of the sample.
            subfolder (str): The subfolder containing data relevant to this sample
            find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path.
        Returns:
            str: Path of data directory.
        Raises:
            FileNotFoundError
        '''
        # 为了简洁,这里直接将路径硬编码到代码中。
        data_root = kDEFAULT_DATA_ROOT = os.path.abspath("/TensorRT-5.0.2.6/python/data/")
    
        subfolder_path = os.path.join(data_root, subfolder)
        if not os.path.exists(subfolder_path):
            print("WARNING: " + subfolder_path + " does not exist. Using " + data_root + " instead.")
        data_path = subfolder_path if os.path.exists(subfolder_path) else data_root
    
        if not (os.path.exists(data_path)):
            raise FileNotFoundError(data_path + " does not exist.")
    
        for index, f in enumerate(find_files):
            find_files[index] = os.path.abspath(os.path.join(data_path, f))
            if not os.path.exists(find_files[index]):
                raise FileNotFoundError(find_files[index] + " does not exist. ")
    
        if find_files:
            return data_path, find_files
        else:
            return data_path
    #-----------------
    
    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
    
    class ModelData(object):
        INPUT_NAME = "input"
        INPUT_SHAPE = (1, 28, 28)
        OUTPUT_NAME = "prob"
        OUTPUT_SHAPE = (10, )
        DTYPE = trt.float32
    
    
    # 用一个解析器从binary_proto中检索mean data.
    def retrieve_mean(mean_proto):
        with trt.CaffeParser() as parser:
            return parser.parse_binary_proto(mean_proto)
    
    # 创建解析器的plugin factory. 设定成全局是因为可以在engine销毁之后再销毁.
    fc_factory = fcplugin.FCPluginFactory()
    
    
    '''main第二步:构建engine '''
    def build_engine(deploy_file, model_file):
    
        with trt.Builder(TRT_LOGGER) as builder, 
             builder.create_network() as network, 
             trt.CaffeParser() as parser:
    
            builder.max_workspace_size = GiB(1)
    
            # 设定解析器的plugin factory。这里将其绑定到引用是为了后续能够手动销毁
            # parser.plugin_factory_ext 是一个 write-only属性
            ''' plugin_factory_ext是CaffeParser特有的接口,为了接入用户定义的组件
           https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Caffe/pyCaffe.html?highlight=plugin_factory_ext
            '''
            parser.plugin_factory_ext = fc_factory
    
            # 解析该模型,并构建engine
            model_tensors = parser.parse(deploy=deploy_file, model=model_file, network=network, dtype=ModelData.DTYPE)
    
            # 标记网络的输出
            network.mark_output(model_tensors.find(ModelData.OUTPUT_NAME))
    
            return builder.build_cuda_engine(network)
    
    
    '''main中第三步:分配buffer '''
    def allocate_buffers(engine):
    
        inputs = []
        outputs = []
        bindings = []
        stream = cuda.Stream()
    
        for binding in engine:
    
            size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
            dtype = trt.nptype(engine.get_binding_dtype(binding))
    
            # 分配host和device端的buffer
            host_mem = cuda.pagelocked_empty(size, dtype)
            device_mem = cuda.mem_alloc(host_mem.nbytes)
    
            # 将device端的buffer追加到device的bindings.
            bindings.append(int(device_mem))
    
            # Append to the appropriate list.
            if engine.binding_is_input(binding):
                inputs.append(HostDeviceMem(host_mem, device_mem))
            else:
                outputs.append(HostDeviceMem(host_mem, device_mem))
    
        return inputs, outputs, bindings, stream
    
    
    '''main中第四步:选择测试样本 '''
    def load_normalized_test_case(data_path, pagelocked_buffer, mean, case_num=randint(0, 9)):
    
        test_case_path = os.path.join(data_path, str(case_num) + ".pgm")
    
        # Flatten图像为1维数组,然后归一化,并copy到pagelocked内存中。
        img = np.array(Image.open(test_case_path)).ravel()
        np.copyto(pagelocked_buffer, img - mean)
    
        return case_num
    
    
    '''main中第五步:执行inference '''
    # 该函数可以适应多个输入/输出;输入和输出格式为HostDeviceMem对象组成的列表
    def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
    
        # 将数据移动到GPU
        [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    
        # 执行inference.
        context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
    
        # 将结果从 GPU写回到host端
        [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    
        # 同步stream
        stream.synchronize()
    
        # 返回host端的输出结果
        return [out.host for out in outputs]
    
    
    def main():
    
        ''' 1 - 读取caffe生成的模型文件'''
        data_path, [deploy_file, model_file, mean_proto] = find_sample_data(
              description="Runs an MNIST network using a Caffe model file", 
              subfolder="mnist", 
             find_files=["mnist.prototxt",
                     "mnist.caffemodel", 
                     "mnist_mean.binaryproto"])
    
        ''' 2 - 基于build_engine构建engine'''
        with build_engine(deploy_file, model_file) as engine:
    
            ''' 3 - 构建engine, 分配buffers, 创建一个流 '''
            inputs, outputs, bindings, stream = allocate_buffers(engine)
            mean = retrieve_mean(mean_proto)
    
            with engine.create_execution_context() as context:
    
                ''' 4 - 读取测试样本,并归一化'''
                case_num = load_normalized_test_case(data_path, inputs[0].host, mean)
    
                ''' 5 -执行inference,do_inference函数会返回一个list类型,此处只有一个元素 '''
                [output] = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
                pred = np.argmax(output)
    
                print("Test Case: " + str(case_num))
                print("Prediction: " + str(pred))
    
        ''' 6 - 在engine销毁之后,这里手动销毁plugin'''
        fc_factory.destroy_plugin()
    
    
    if __name__ == "__main__":
        main()
    

    运行结果如图:

  • 相关阅读:
    Node 之 Express 4x 骨架详解
    Express中app.use()用法 详解
    纯手打AJAX,还有一个对象转查询字符串的小方法obj=>url
    简单node服务器demo,麻雀虽小,五脏俱全
    node环境下多种方式“get数据解析”
    module.exports与exports,export与export default的区别
    2019年9月Github上最热门的JavaScript开源项目
    基于Node 的http转发demo,项目中请使用express+http-proxy-middleware
    HTTP/2 新特性总结
    TensorFlow 8 bit模型量化
  • 原文地址:https://www.cnblogs.com/shouhuxianjian/p/10529668.html
Copyright © 2011-2022 走看看