zoukankan      html  css  js  c++  java
  • 例子:照片的OCR识别

    来自ng的ml-003中 18_XVIII._Application_Example-_Photo_OCR

    这是ng2013年在coursera上最后的一课了。这一系列的几个视频还是相比前面有些难懂,。。。。。。

    ng说拿这个做例子有三个原因:一、演示如何将复杂的机器学习进行融合;二介绍下机器学习的type line和当你决定做某事的时候如何的利用资源;三、这个例子能够说明更多有趣的机器学习idea(将机器学习用于计算机视觉,人工数据综合)


    首先是图像中的文字识别


    这是最简单的几部划分,(但是比如你之前的单词是cleaning,但是机器有可能会反馈给你c1eaning,会有少许的错误,简单的提下)


    这里是一个OCR识别的管道图,下面是每个部分差不多需要这么多人的合作,但是(ng最后居然说其实一个人完成整个工作也是可以的,如果他知道怎么做的话,唉)

    一、滑动窗口


    相对应来说,行人检测中的窗口比较简单,因为他的背景较为单一,不像之前的文本识别,背景很是复杂,在行人检测中,要考虑到不同距离下不同人的窗口的高度和宽度等等。


    这里是个简单的数据集的例子,通过观察采用这么大的窗口较为合适,行人检测的数据集一般都是1k或者10k等等的


    从图的左上角开始一个82*36的窗口,然后分类获得这个是y=0,就是非行人的数据,然后将窗口右移这其中的移动的距离就叫做stepsize,如果stepsize等于1 的确可以抓取足够的数据,但是计算量太大,一半都是stepsize等于4 或者8.然后这里的窗口大小如果按照需要也是可以调的更大的。并不是完全的限定在一个数值上


    这样就能够获得这样一个结果


    通过这样的方法就能应用在文字识别上,通过不同的滑动窗口获得文本的位置


    通过不同的滑动窗口最后就锁定了文字的位置,然后进行图片的放大来更清晰的显示字符串的位置


    但是如果采用中间划分的方法,左边的明显是滑动窗口取到了两个字,而右边的是取到了一个完整的字


    通过一种方法当滑动窗口滑倒完整的字的时候不采用切分,而滑倒两个字的时候采用切分。

    二、人工数据结合

    ng说见过的最好的机器学习算法都是采用一个low bias算法,然后再大量的数据上运行。对于文字识别来说。数据有一个是来自于真实的数据,一个是来自于众多的字体库


    或者通过采用字体库的字体,在放到实际数据的背景上合成人工数据:


    或者是在数据上加上扭曲等方法


    在音频上:



    对于数据添加噪声来说,添加的噪声是有意义的,比如上图中的扭曲是可以在test中真实找到的,(类似模拟test数据一样)。而下文中的椒盐噪声是无意义的,添加了也没什么帮助,因为在这个例子中,我们是想识别的文字而且文字的扭曲是真实世界中看得到的,而添加的椒盐噪声是除非你就是为了比如降噪这种噪音,能够在test中看到的,因为这里是为了识别不同形状的a,而不是为了降噪,


    按照上图说的,在添加人工合成的数据的时候,一定要知道你的模型是不是过拟合的,如果模型是欠拟合的,那么增加再多的数据都是在浪费时间。其次,可以坐下来和团队的人员一起问问 想要这些数据的处理速度提升10x,需要做多少工作:1、人工合成;2、手动添加标签;3、寻找混合来源。

    三、细胞级别分析


    如上图来说,对于整个系统而言,每个地方都是需要做工作的,但是如何找到这个系统的瓶颈之处,通过提升这个系统的瓶颈来达到提升整个系统的效率,这是值得思考的,不然在其他表现很好的环节上大量的工作,最后还是在浪费时间

    相比较而言,首先没有任何改变的情况下最好的精度是72%,然后通过修改第二项,让他的输出是100准确的,那么整个系统提升到89%的精度,有17%的改变,说明这部分值得我们花时间,然后再改动第二项的基础上,接着将第三项改动成完美情况下,整个系统只提升了1%,这说明第三项是很好的,差不多不需要花时间去完善。

    这同样让我们知道每个部分的上限是多少,和在这个部分的上限上运行的时候整个系统的精度是多少



    上面两个图就是一个人脸检测的模型过程。


    通过与最原始的模型的效果相对比,先逐个部分的进行人工的修改(即将这个部分的精度提到上限),比如第一部分的背景移除,可以通过ps等软件人工的去除,然后将这个完美的模型代替第一部分的输出,观察整个模型提升的效果,这里第一个模型只提升了0.1%,说明这部分没什么可改善的地方。接着往下按照这种原理进行。找到整个模型的瓶颈之处。

    就是用人工的小数据去验证模型的瓶颈,而不至于花了很久时间才发现其实都在浪费时间。






  • 相关阅读:
    Git中从远程的分支获取最新的版本到本地方式
    vector map迭代器失效解决方案
    git 远程库 创建私钥
    centos type.h 编译错误问题
    关于/usr/bin/ld: cannot find -lcrypto 的错误
    线程存储(Thread Specific Data)
    bgcolor RGB 和16进制之间的转换,16进制转RGB,源码
    html 网页代码大全,总结,使用
    使用iframe的好处与坏处详细比拼
    java向MySQL插入当前时间的四种方式和java时间日期格式化的几种方法(案例说明)
  • 原文地址:https://www.cnblogs.com/shouhuxianjian/p/4529210.html
Copyright © 2011-2022 走看看