zoukankan      html  css  js  c++  java
  • 网络流之最大流与最小费用流入门&&模板

    理解处

    刷题处

    模板处

    最大流模板

    处理重边的+(优化)

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 10;
    const int INF = 0x3f3f3f3f;
    
    struct Edge
    {
        int from,to,cap,flow;
        Edge(){}
        Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
    };
    
    struct Dinic
    {
        int n,m,s,t;            //结点数,边数(包括反向弧),源点与汇点编号
        vector<Edge> edges;     //边表 edges[e]和edges[e^1]互为反向弧
        vector<int> G[maxn];    //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
        bool vis[maxn];         //BFS使用,标记一个节点是否被遍历过
        int d[maxn];            //d[i]表从起点s到i点的距离(层次)
        int cur[maxn];          //cur[i]表当前正访问i节点的第cur[i]条弧
    
        void init(int n,int s,int t)
        {
            this->n=n,this->s=s,this->t=t;
            for(int i=0;i<=n;i++) G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from,int to,int cap)
        {
            edges.push_back( Edge(from,to,cap,0) );
            edges.push_back( Edge(to,from,0,0) );
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool BFS()
        {
            memset(vis,0,sizeof(vis));
            queue<int> Q;//用来保存节点编号的
            Q.push(s);
            d[s]=0;
            vis[s]=true;
            while(!Q.empty())
            {
                int x=Q.front(); Q.pop();
                for(int i=0; i<G[x].size(); i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to] && e.cap>e.flow)
                    {
                        vis[e.to]=true;
                        d[e.to] = d[x]+1;
                        Q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
    
        //a表示从s到x目前为止所有弧的最小残量
        //flow表示从x到t的最小残量
        int DFS(int x,int a)
        {
            if(x==t || a==0)return a;
            int flow=0,f;//flow用来记录从x到t的最小残量
            for(int& i=cur[x]; i<G[x].size(); i++)///注意这里的&符号,这样i增加的同时也能改变cur[u]的值,达到记录当前弧的目的
            {
                
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 )
                {
                    e.flow +=f;
                    edges[G[x][i]^1].flow -=f;
                    flow += f;
                    a -= f;
                    if(a==0) break;
                }
            }
            if(!flow) d[x] = -1;///炸点优化
            return flow;
        }
    
        int Maxflow()
        {
            int flow=0;
            while(BFS())
            {
                memset(cur,0,sizeof(cur));
                flow += DFS(s,INF);
            }
            return flow;
        }
    }DC;
    int main(void )
    {
        int N,M,S,T;
        while(scanf("%d%d%d%d",&N,&M,&S,&T)!=EOF)
        {
            DC.init(N,S,T);
            while(M--)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                DC.AddEdge(u,v,w);
            }
            printf("%d",DC.Maxflow());
        }
    }
    View Cod

    比上面快一点

    #include<iostream>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<vector>
    #include<cmath>
    #include<queue>
    #define ll long long
    #define maxn 23500
    #define maxe 1000000
    #define inf 1100000000
    using namespace std;
     
    struct Edge
    {
        int u, v, cap;
        int nxt;
    }edge[maxe];
     
    int head[maxn];
    int n, m;
     
    struct Dicnic
    {
        int level[maxn];
        int iter[maxn];
        int add;
        void init(){
            add = 0; memset(head, -1, sizeof(head));
            memset(iter, -1, sizeof(iter));
        }
        void insert(int u, int v, int c){
            edge[add].u = u; edge[add].v = v; edge[add].cap = c;
            edge[add].nxt = head[u]; head[u] = add++;
            edge[add].u = v; edge[add].v = u; edge[add].cap = 0;
            edge[add].nxt = head[v]; head[v] = add++;
        }
        void bfs(int s){
            memset(level, -1, sizeof(level));
            queue<int> que;
            level[s] = 0;
            que.push(s);
            while (!que.empty()){
                int v = que.front(); que.pop();
                for (int i = head[v]; i != -1; i = edge[i].nxt){
                    Edge &e = edge[i];
                    if (e.cap > 0 && level[e.v] < 0){
                        level[e.v] = level[v] + 1;
                        que.push(e.v);
                    }
                }
            }
        }
     
        int dfs(int v, int t, int f){
            if (v == t) return f;
            for (int &i = iter[v]; i != -1; i = edge[i].nxt){
                Edge &e = edge[i]; Edge &reve = edge[i ^ 1];
                if (e.cap > 0 && level[v] < level[e.v]){
                    int d = dfs(e.v, t, min(f, e.cap));
                    if (d>0){
                        e.cap -= d; reve.cap += d;
                        return d;
                    }
                }
            }
            return 0;
        }
     
        int max_flow(int s, int t){
            int flow = 0;
            for (;;){
                bfs(s);
                if (level[t] < 0) return flow;
                memcpy(iter, head, sizeof(iter));
                int f;
                while ((f = dfs(s, t, inf))>0){
                    flow += f;
                }
            }
        }
    }net;
     
    int a[maxn], b[maxn];
     
    int main()
    {
        while (cin >> n >> m){
            net.init();
            int s = 0, t = n + 1;
            for (int i = 1; i <= n; i++) {
                scanf("%d", a + i); scanf("%d", b + i);
                net.insert(i, t, a[i]);
                net.insert(s, i, b[i]);
            }
            int ui, vi, wi;
            for (int i = 0; i < m; i++){
                scanf("%d%d%d", &ui, &vi, &wi);
                net.insert(ui, vi, wi);
                net.insert(vi, ui, wi);
            }
            printf("%d
    ", net.max_flow(s,t));
        }
        return 0;
    }
    View Code

    还行

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    
    using namespace std;
    
    const int maxn = 1000001;
    const int INF = 0x3f3f3f;
    struct no
    {
        int to;
        int cap;
        int rev;
    };
    vector<no> G[maxn];
    int level[maxn];///顶点到源点的距离标记
    int iter[maxn];///当前弧,在其之前的边没有用了
    
    void add(int from,int to,int cap)
    {
        G[from].push_back((no){to,cap,G[to].size()});
        G[to].push_back((no){from,0,G[from].size()-1});
    }
    
    void bfs(int s)
    {
        memset(level,-1,sizeof(level));
        queue<int> que;
        level[s] = 0;
        que.push(s);
        while(!que.empty())
        {
            int v = que.front( ) ; que.pop( );
            for(int i=0 ; i<G[v].size( ) ; i++)
            {
                no &e = G[v][i];
                if(e.cap>0&&level[e.to]<0)
                {
                    level[e.to] = level[v]+1;
                    que.push(e.to);
                }
            }
        }
    }
    int dfs(int v,int t, int f)
    {
        if(v==t) return f;
    
        for(int &i=iter[v];i<G[v].size();++i)//这里是引用,i++的同时iter也++,其实相当于上个的used,不过不用判断了
        {
            no &e = G[v][i];
            if(e.cap>0 && level[e.to]>level[v])
            {
                int d=dfs(e.to,t,min(e.cap,f));
                if(d>0)
                {
                    e.cap-=d;
                    G[e.to][e.rev].cap+=d;
                    return d;
                }
            }
        }
        return 0;
    }
    int max_flow(int s,int t)
    {
        int flow = 0;
        for( ; ; )
        {
            bfs(s);
            if(level[t]<0)
            return flow;
            memset(iter,0,sizeof(iter));
            int f;
            while((f=dfs(s,t,INF))>0)
                flow+=f;
        }
    }
    int main()
    {
        int s,t,m,n;
        scanf("%d%d%d%d",&n,&m,&s,&t);
    
        int u,v,cap;
        for(int i=0;i<m;++i)
        {
            scanf("%d%d%d",&u,&v,&cap);
            add(u,v,cap);
        }
    
        printf("%d",max_flow(s,t));
        return 0;
    }
    View Code

     神奇代码:巨快

    #include <bits/stdc++.h>
    
    const int MAXN = 1e6 + 10;
    const int INF = 0x3f3f3f3f;
    
    struct Node {
        int v, f, index;
        Node(int v, int f, int index) : v(v), f(f), index(index) {}
    };
    
    int n, m, s, t;
    std::vector<Node> edge[MAXN];
    std::vector<int> list[MAXN], height, count, que, excess;
    typedef std::list<int> List;
    std::vector<List::iterator> iter;
    List dlist[MAXN];
    int highest, highestActive;
    typedef std::vector<Node>::iterator Iterator;
    
     void init()
    {
        for(int i=0; i<=n; i++)
            edge[i].clear();
    }
    
     void addEdge(const int u, const int v, const int f) {
        edge[u].push_back(Node(v, f, edge[v].size()));
        edge[v].push_back(Node(u, 0, edge[u].size() - 1));
    }
    
     void globalRelabel(int n, int t) {
        height.assign(n, n);
        height[t] = 0;
        count.assign(n, 0);
        que.clear();
        que.resize(n + 1);
        int qh = 0, qt = 0;
        for (que[qt++] = t; qh < qt;) {
            int u = que[qh++], h = height[u] + 1;
            for (Iterator p = edge[u].begin(); p != edge[u].end(); ++p) {
                if (height[p->v] == n && edge[p->v][p->index].f > 0) {
                    count[height[p->v] = h]++;
                    que[qt++] = p->v;
                }
            }
        }
        for (int i = 0; i <= n; i++) {
            list[i].clear();
            dlist[i].clear();
        }
        for (int u = 0; u < n; ++u) {
            if (height[u] < n) {
                iter[u] = dlist[height[u]].insert(dlist[height[u]].begin(), u);
                if (excess[u] > 0) list[height[u]].push_back(u);
            }
        }
        highest = (highestActive = height[que[qt - 1]]);
    }
     void push(int u, Node &e) {
        int v = e.v;
        int df = std::min(excess[u], e.f);
        e.f -= df;
        edge[v][e.index].f += df;
        excess[u] -= df;
        excess[v] += df;
        if (0 < excess[v] && excess[v] <= df) list[height[v]].push_back(v);
    }
    
     void discharge(int n, int u) {
        int nh = n;
        for (Iterator p = edge[u].begin(); p != edge[u].end(); ++p) {
            if (p->f > 0) {
                if (height[u] == height[p->v] + 1) {
                    push(u, *p);
                    if (excess[u] == 0) return;
                } else {
                    nh = std::min(nh, height[p->v] + 1);
                }
            }
        }
        int h = height[u];
        if (count[h] == 1) {
            for (int i = h; i <= highest; i++) {
                for (List::iterator it = dlist[i].begin(); it != dlist[i].end();
                     ++it) {
                    count[height[*it]]--;
                    height[*it] = n;
                }
                dlist[i].clear();
            }
            highest = h - 1;
        } else {
            count[h]--;
            iter[u] = dlist[h].erase(iter[u]);
            height[u] = nh;
            if (nh == n) return;
            count[nh]++;
            iter[u] = dlist[nh].insert(dlist[nh].begin(), u);
            highest = std::max(highest, highestActive = nh);
            list[nh].push_back(u);
        }
    }
    
     int hlpp(int n, int s, int t) {
        if (s == t) return 0;
        highestActive = 0;
        highest = 0;
        height.assign(n, 0);
        height[s] = n;
        iter.resize(n);
        for (int i = 0; i < n; i++)
            if (i != s)
                iter[i] = dlist[height[i]].insert(dlist[height[i]].begin(), i);
        count.assign(n, 0);
        count[0] = n - 1;
        excess.assign(n, 0);
        excess[s] = INF;
        excess[t] = -INF;
        for (int i = 0; i < (int)edge[s].size(); i++) push(s, edge[s][i]);
        globalRelabel(n, t);
        for (int u /*, res = n*/; highestActive >= 0;) {
            if (list[highestActive].empty()) {
                highestActive--;
                continue;
            }
            u = list[highestActive].back();
            list[highestActive].pop_back();
            discharge(n, u);
            // if (--res == 0) globalRelabel(res = n, t);
        }
        return excess[t] + INF;
    }
    
    int main() {
        while(~scanf("%d %d %d %d", &n, &m, &s, &t)){
            init();
            for (int i = 0, u, v, f; i < m; i++) {
                scanf("%d %d %d", &u, &v, &f);
                addEdge(u, v, f);
            }
            printf("%d", hlpp(n + 1, s, t));///点是1~n范围的话,貌似要 n+1
        }
        return 0;
    }
    View Code

     最大流的最小费用流模板

    struct Edge  
    {  
        int from,to,cap,flow,cost;  
        Edge(){}  
        Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){}  
    };  
      
    struct MCMF  
    {  
        int n,m,s,t;  
        vector<Edge> edges;  
        vector<int> G[maxn];  
        bool inq[maxn];     //是否在队列  
        int d[maxn];        //Bellman_ford单源最短路径  
        int p[maxn];        //p[i]表从s到i的最小费用路径上的最后一条弧编号  
        int a[maxn];        //a[i]表示从s到i的最小残量  
      
        //初始化  
        void init(int n,int s,int t)  
        {  
            this->n=n, this->s=s, this->t=t;  
            edges.clear();  
            for(int i=0;i<n;++i) G[i].clear();  
        }  
      
        //添加一条有向边  
        void AddEdge(int from,int to,int cap,int cost)  
        {  
            edges.push_back(Edge(from,to,cap,0,cost));  
            edges.push_back(Edge(to,from,0,0,-cost));  
            m=edges.size();  
            G[from].push_back(m-2);  
            G[to].push_back(m-1);  
        }  
      
        //求一次增广路  
        bool BellmanFord(int &flow, int &cost)  
        {  
            for(int i=0;i<n;++i) d[i]=INF;  
            memset(inq,0,sizeof(inq));  
            d[s]=0, a[s]=INF, inq[s]=true, p[s]=0;  
            queue<int> Q;  
            Q.push(s);  
            while(!Q.empty())  
            {  
                int u=Q.front(); Q.pop();  
                inq[u]=false;  
                for(int i=0;i<G[u].size();++i)  
                {  
                    Edge &e=edges[G[u][i]];  
                    if(e.cap>e.flow && d[e.to]>d[u]+e.cost)  
                    {  
                        d[e.to]= d[u]+e.cost;  
                        p[e.to]=G[u][i];  
                        a[e.to]= min(a[u],e.cap-e.flow);  
                        if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }  
                    }  
                }  
            }  
            if(d[t]==INF) return false;  
            flow +=a[t];  
            cost +=a[t]*d[t];  
            int u=t;  
            while(u!=s)  
            {  
                edges[p[u]].flow += a[t];  
                edges[p[u]^1].flow -=a[t];  
                u = edges[p[u]].from;  
            }  
            return true;  
        }  
      
        //求出最小费用最大流  
        int Min_cost()  
        {  
            int flow=0,cost=0;  
            while(BellmanFord(flow,cost));  
            return cost;  
        }  
    }MM;
    View Code
    struct Edge
    {
        int from,to,cap,flow,cost;
        Edge(int u,int v,int ca,int f,int co):from(u),to(v),cap(ca),flow(f),cost(co){};
    };
    
    struct MCMF
    {
        int n,m,s,t;
        vector<Edge> edges;
        vector<int> G[maxn];
        int inq[maxn];//是否在队列中
        int d[maxn];//距离
        int p[maxn];//上一条弧
        int a[maxn];//可改进量
    
        void init(int n)//初始化
        {
            this->n=n;
            for(int i=0;i<=n;i++)
                G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from,int to,int cap,int cost)//加边
        {
            edges.push_back(Edge(from,to,cap,0,cost));
            edges.push_back(Edge(to,from,0,0,-cost));
            int m=edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool SPFA(int s,int t,int &flow,int &cost)//寻找最小费用的增广路,使用引用同时修改原flow,cost
        {
            for(int i=0;i<n;i++)
                d[i]=INF;
            memset(inq,0,sizeof(inq));
            d[s]=0;inq[s]=1;p[s]=0;a[s]=INF;
            queue<int> Q;
            Q.push(s);
            while(!Q.empty())
            {
                int u=Q.front();
                Q.pop();
                inq[u]--;
                for(int i=0;i<G[u].size();i++)
                {
                    Edge& e=edges[G[u][i]];
                    if(e.cap>e.flow && d[e.to]>d[u]+e.cost)//满足可增广且可变短
                    {
                        d[e.to]=d[u]+e.cost;
                        p[e.to]=G[u][i];
                        a[e.to]=min(a[u],e.cap-e.flow);
                        if(!inq[e.to])
                        {
                            inq[e.to]++;
                            Q.push(e.to);
                        }
                    }
                }
            }
            if(d[t]==INF) return false;//汇点不可达则退出
            flow+=a[t];
            cost+=d[t]*a[t];
            int u=t;
            while(u!=s)//更新正向边和反向边
            {
                edges[p[u]].flow+=a[t];
                edges[p[u]^1].flow-=a[t];
                u=edges[p[u]].from;
            }
            return true;
        }
    
        int MincotMaxflow(int s,int t)
        {
            int flow=0,cost=0;
            while(SPFA(s,t,flow,cost));
            return cost;
        }
    }MM;
    View Code

     固定流量的最小费用

    #include <iostream>
    #include <queue>
    #include <vector>
    #include <cstdio>
    #include <cstring>
     
    using namespace std;
    const int maxn = 3000;
    const int INF = 0x3f3f3f3f;
     
    typedef pair<int,int> P;
    struct Edge
    {
        int to, cap, cost, rev;
        Edge(int to_, int cap_, int cost_, int rev_):to(to_),cap(cap_),cost(cost_),rev(rev_){}
    };
     
    vector<Edge> G[maxn];
    int V, n, m, relation[55][55];
    int h[maxn], dist[maxn], prevv[maxn], preve[maxn];
     
    void add_edge(int from, int to, int cap, int cost)
    {
        G[from].push_back(Edge(to, cap, cost, G[to].size()));
        G[to].push_back(Edge(from, 0, -cost, G[from].size()-1));
    }
     
    int min_cost_flow(int s, int t, int f)
    {
        int res = 0;
        memset(h, 0, sizeof(h));
        while(f > 0) {
            priority_queue<P, vector<P>, greater<P> > pq;
            fill(dist, dist + V, INF);
            dist[s] = 0;
            pq.push(P(0, s));
            while(!pq.empty()) {
                P p = pq.top(); pq.pop();
                int v = p.second;
                if(dist[v] < p.first)   continue;
                for(int i = 0; i < G[v].size(); i++) {
                    Edge& e = G[v][i];
                    if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
                        dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
                        prevv[e.to] = v;
                        preve[e.to] = i;
                        pq.push(P(dist[e.to], e.to));
                    }
                }
            }
            if(dist[t] == INF)  return -1;
     
            for(int v = 0; v < V; v++)  h[v] += dist[v];
     
            int d = f;
            for(int v = t; v != s; v = prevv[v]) {
                d = min(d, G[prevv[v]][preve[v]].cap);
            }
            f -= d;
            res += d * h[t];
            for(int v = t; v != s; v = prevv[v]) {
                Edge& e = G[prevv[v]][preve[v]];
                e.cap -= d;
                G[v][e.rev].cap += d;
            }
        }
        return res;
    }
     
    理论快
    #include<map>
    #include<set>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<ctime>
    #include<cctype>
    #include<string>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    using namespace std;
     
    #define end() return 0
     
    typedef long long ll;
    typedef unsigned int uint;
    typedef unsigned long long ull;
     
     
     
    const int maxn = 4000 + 5;
    const int INF = 0x7f7f7f7f;
     
    struct Edge{
        int from,to,cap,flow,cost;
        Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w){}
    };
     
    struct MCMF{
        int n,m;
        vector<Edge>edge; //边数的两倍
        vector<int>G[maxn]; //邻接表,G[i][j]表示i的第j条边在e数组中的序号
        int inq[maxn]; //是否在队列
        int d[maxn]; //Bellman-Ford
        int p[maxn]; //上一条弧
        int a[maxn]; //可改进量
     
        void init(int n){
            this -> n = n;
            for(int i=0;i<=n;i++) G[i].clear();
            edge.clear();
        }
     
        void addEdge(int from,int to,int cap,int cost){
            edge.push_back(Edge(from,to,cap,0,cost));
            edge.push_back(Edge(to,from,0,0,-cost));
            m=edge.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
     
        bool BellmanFord(int s,int t,int& flow,int& cost){
            memset(d,INF,sizeof(d));
            memset(inq,0,sizeof(inq));
            d[s]=0; inq[s]=1; p[s]=0; a[s]=INF;
     
            queue<int>q;
            q.push(s);
            while(!q.empty()){
                int u=q.front();q.pop();
                inq[u]=0;
                for(int i=0;i<G[u].size();i++){
                    Edge& e=edge[G[u][i]];
                    if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
                        d[e.to]=d[u]+e.cost;
                        p[e.to]=G[u][i];
                        a[e.to]=min(a[u],e.cap-e.flow);
                        if(!inq[e.to]){
                            q.push(e.to);
                            inq[e.to]=1;
                        }
                    }
                }
            }
            if(d[t]==INF) return false;
            flow+=a[t];
            cost+=d[t];
            if(flow==2) return false;
            for(int u=t;u!=s;u=edge[p[u]].from){
                edge[p[u]].flow+=a[t];
                edge[p[u]^1].flow-=a[t];
            }
            return true;
        }
     
        //需要保证初始网络中没有负权圈
        int MincostMaxflow(int s,int t){
            int flow=0,cost=0;
            while(BellmanFord(s,t,flow,cost));
            return cost;
        }
    };
     
    int N,M;
    int a,b,c;
    MCMF mcmf;
     
    void input(){
        scanf("%d%d",&N,&M);
        mcmf.init(N);
        for(int i=0;i<M;i++){
            scanf("%d%d%d",&a,&b,&c);
            mcmf.addEdge(a,b,1,c);
            mcmf.addEdge(b,a,1,c);
        }
    }
     
    void solve(){
        printf("%d
    ",mcmf.MincostMaxflow(1,N));
    }
     
    int main(){
        input();
        solve();
        end();
    }
    View Code

    区别是81行多了个   if(flow==2) return false : 意思是控制流量为2;

     视频学习  讲到很详细而且容易理解  图形分析理解

  • 相关阅读:
    Java8时间处理
    yii2.0上传图片
    将字符串不足长度的填充到指定长度
    通过PHPExcel将Excel表文件中数据导入数据库
    css万能清除原理
    浮动+清除浮动
    DIV滚动条设置添加 CSS滚动条显示与滚动条隐藏
    地图上显示点在点上标注当前点的id
    百度地图点击地址后显示图标,保存到数据库之后,页面显示的是保存的坐标图标
    百度地图API
  • 原文地址:https://www.cnblogs.com/shuaihui520/p/9153164.html
Copyright © 2011-2022 走看看