np.linalg.norm() # linalg = linear(线性) + algebra(代数), norm表示范数
x_norm = np.linalg.norm(x, ord=None, axis=None, keepdims=False)
①x: 表示矩阵(也可以是一维)
②ord:范数类型
向量的范数:
矩阵的范数:
ord=1:列和的最大值
ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根
ord=∞:行和的最大值
ord=None:默认情况下,是求整体的矩阵元素平方和,再开根号。(注意.None不是求2范数)
③axis:处理类型
axis=1表示按行向量处理,求多个行向量的范数
axis=0表示按列向量处理,求多个列向量的范数
axis=None表示矩阵范数。
④keepdims:是否保持矩阵的二维特性,避免出现shape = (5, )这样的形状
True表示保持矩阵的二维特性,False相反