zoukankan      html  css  js  c++  java
  • 用CNN及MLP等方法识别minist数据集

    用CNN及MLP等方法识别minist数据集

    前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新。

      手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount”:)这里就不多做介绍了,简单给大家看一下:

    复制代码
     1 # Author:Charlotte
     2 # Plot mnist dataset
     3 from keras.datasets import mnist
     4 import matplotlib.pyplot as plt
     5 # load the MNIST dataset
     6 (X_train, y_train), (X_test, y_test) = mnist.load_data()
     7 # plot 4 images as gray scale
     8 plt.subplot(221)
     9 plt.imshow(X_train[0], cmap=plt.get_cmap('PuBuGn_r'))
    10 plt.subplot(222)
    11 plt.imshow(X_train[1], cmap=plt.get_cmap('PuBuGn_r'))
    12 plt.subplot(223)
    13 plt.imshow(X_train[2], cmap=plt.get_cmap('PuBuGn_r'))
    14 plt.subplot(224)
    15 plt.imshow(X_train[3], cmap=plt.get_cmap('PuBuGn_r'))
    16 # show the plot
    17 plt.show()
    复制代码

      图:

      1.BaseLine版本

      一开始我没有想过用CNN做,因为比较耗时,所以想看看直接用比较简单的算法看能不能得到很好的效果。之前用过机器学习算法跑过一遍,最好的效果是SVM,96.8%(默认参数,未调优),所以这次准备用神经网络做。BaseLine版本用的是MultiLayer Percepton(多层感知机)。这个网络结构比较简单,输入--->隐含--->输出。隐含层采用的rectifier linear unit,输出直接选取的softmax进行多分类。

      网络结构:

      代码:

    复制代码
     1 # coding:utf-8
     2 # Baseline MLP for MNIST dataset
     3 import numpy
     4 from keras.datasets import mnist
     5 from keras.models import Sequential
     6 from keras.layers import Dense
     7 from keras.layers import Dropout
     8 from keras.utils import np_utils
     9 
    10 seed = 7
    11 numpy.random.seed(seed)
    12 #加载数据
    13 (X_train, y_train), (X_test, y_test) = mnist.load_data()
    14 
    15 num_pixels = X_train.shape[1] * X_train.shape[2]
    16 X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
    17 X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')
    18 
    19 X_train = X_train / 255
    20 X_test = X_test / 255
    21 
    22 # 对输出进行one hot编码
    23 y_train = np_utils.to_categorical(y_train)
    24 y_test = np_utils.to_categorical(y_test)
    25 num_classes = y_test.shape[1]
    26 
    27 # MLP模型
    28 def baseline_model():
    29     model = Sequential()
    30     model.add(Dense(num_pixels, input_dim=num_pixels, init='normal', activation='relu'))
    31     model.add(Dense(num_classes, init='normal', activation='softmax'))
    32     model.summary()
    33     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    34     return model
    35 
    36 # 建立模型
    37 model = baseline_model()
    38 
    39 # Fit
    40 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=10, batch_size=200, verbose=2)
    41 
    42 #Evaluation
    43 scores = model.evaluate(X_test, y_test, verbose=0)
    44 print("Baseline Error: %.2f%%" % (100-scores[1]*100))#输出错误率
    复制代码

      结果:

    复制代码
     1 Layer (type)                     Output Shape          Param #     Connected to
     2 ====================================================================================================
     3 dense_1 (Dense)                  (None, 784)           615440      dense_input_1[0][0]
     4 ____________________________________________________________________________________________________
     5 dense_2 (Dense)                  (None, 10)            7850        dense_1[0][0]
     6 ====================================================================================================
     7 Total params: 623290
     8 ____________________________________________________________________________________________________
     9 Train on 60000 samples, validate on 10000 samples
    10 Epoch 1/10
    11 3s - loss: 0.2791 - acc: 0.9203 - val_loss: 0.1420 - val_acc: 0.9579
    12 Epoch 2/10
    13 3s - loss: 0.1122 - acc: 0.9679 - val_loss: 0.0992 - val_acc: 0.9699
    14 Epoch 3/10
    15 3s - loss: 0.0724 - acc: 0.9790 - val_loss: 0.0784 - val_acc: 0.9745
    16 Epoch 4/10
    17 3s - loss: 0.0509 - acc: 0.9853 - val_loss: 0.0774 - val_acc: 0.9773
    18 Epoch 5/10
    19 3s - loss: 0.0366 - acc: 0.9898 - val_loss: 0.0626 - val_acc: 0.9794
    20 Epoch 6/10
    21 3s - loss: 0.0265 - acc: 0.9930 - val_loss: 0.0639 - val_acc: 0.9797
    22 Epoch 7/10
    23 3s - loss: 0.0185 - acc: 0.9956 - val_loss: 0.0611 - val_acc: 0.9811
    24 Epoch 8/10
    25 3s - loss: 0.0150 - acc: 0.9967 - val_loss: 0.0616 - val_acc: 0.9816
    26 Epoch 9/10
    27 4s - loss: 0.0107 - acc: 0.9980 - val_loss: 0.0604 - val_acc: 0.9821
    28 Epoch 10/10
    29 4s - loss: 0.0073 - acc: 0.9988 - val_loss: 0.0611 - val_acc: 0.9819
    30 Baseline Error: 1.81%
    复制代码

      可以看到结果还是不错的,正确率98.19%,错误率只有1.81%,而且只迭代十次效果也不错。这个时候我还是没想到去用CNN,而是想如果迭代100次,会不会效果好一点?于是我迭代了100次,结果如下:

    Epoch 100/100
    8s - loss: 4.6181e-07 - acc: 1.0000 - val_loss: 0.0982 - val_acc: 0.9854
    Baseline Error: 1.46%

      从结果中可以看出,迭代100次也只提高了0.35%,没有突破99%,所以就考虑用CNN来做。

      2.简单的CNN网络

      keras的CNN模块还是很全的,由于这里着重讲CNN的结果,对于CNN的基本知识就不展开讲了。

      网络结构:

      代码:

    复制代码
     1 #coding: utf-8
     2 #Simple CNN
     3 import numpy
     4 from keras.datasets import mnist
     5 from keras.models import Sequential
     6 from keras.layers import Dense
     7 from keras.layers import Dropout
     8 from keras.layers import Flatten
     9 from keras.layers.convolutional import Convolution2D
    10 from keras.layers.convolutional import MaxPooling2D
    11 from keras.utils import np_utils
    12 
    13 seed = 7
    14 numpy.random.seed(seed)
    15 
    16 #加载数据
    17 (X_train, y_train), (X_test, y_test) = mnist.load_data()
    18 # reshape to be [samples][channels][width][height]
    19 X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
    20 X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
    21 
    22 # normalize inputs from 0-255 to 0-1
    23 X_train = X_train / 255
    24 X_test = X_test / 255
    25 
    26 # one hot encode outputs
    27 y_train = np_utils.to_categorical(y_train)
    28 y_test = np_utils.to_categorical(y_test)
    29 num_classes = y_test.shape[1]
    30 
    31 # define a simple CNN model
    32 def baseline_model():
    33     # create model
    34     model = Sequential()
    35     model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(1, 28, 28), activation='relu'))
    36     model.add(MaxPooling2D(pool_size=(2, 2)))
    37     model.add(Dropout(0.2))
    38     model.add(Flatten())
    39     model.add(Dense(128, activation='relu'))
    40     model.add(Dense(num_classes, activation='softmax'))
    41     # Compile model
    42     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    43     return model
    44 
    45 # build the model
    46 model = baseline_model()
    47 
    48 # Fit the model
    49 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=10, batch_size=128, verbose=2)
    50 
    51 # Final evaluation of the model
    52 scores = model.evaluate(X_test, y_test, verbose=0)
    53 print("CNN Error: %.2f%%" % (100-scores[1]*100))
    复制代码

      结果:

    复制代码
     1 ____________________________________________________________________________________________________
     2 Layer (type)                     Output Shape          Param #     Connected to
     3 ====================================================================================================
     4 convolution2d_1 (Convolution2D)  (None, 32, 24, 24)    832         convolution2d_input_1[0][0]
     5 ____________________________________________________________________________________________________
     6 maxpooling2d_1 (MaxPooling2D)    (None, 32, 12, 12)    0           convolution2d_1[0][0]
     7 ____________________________________________________________________________________________________
     8 dropout_1 (Dropout)              (None, 32, 12, 12)    0           maxpooling2d_1[0][0]
     9 ____________________________________________________________________________________________________
    10 flatten_1 (Flatten)              (None, 4608)          0           dropout_1[0][0]
    11 ____________________________________________________________________________________________________
    12 dense_1 (Dense)                  (None, 128)           589952      flatten_1[0][0]
    13 ____________________________________________________________________________________________________
    14 dense_2 (Dense)                  (None, 10)            1290        dense_1[0][0]
    15 ====================================================================================================
    16 Total params: 592074
    17 ____________________________________________________________________________________________________
    18 Train on 60000 samples, validate on 10000 samples
    19 Epoch 1/10
    20 32s - loss: 0.2412 - acc: 0.9318 - val_loss: 0.0754 - val_acc: 0.9766
    21 Epoch 2/10
    22 32s - loss: 0.0726 - acc: 0.9781 - val_loss: 0.0534 - val_acc: 0.9829
    23 Epoch 3/10
    24 32s - loss: 0.0497 - acc: 0.9852 - val_loss: 0.0391 - val_acc: 0.9858
    25 Epoch 4/10
    26 32s - loss: 0.0413 - acc: 0.9870 - val_loss: 0.0432 - val_acc: 0.9854
    27 Epoch 5/10
    28 34s - loss: 0.0323 - acc: 0.9897 - val_loss: 0.0375 - val_acc: 0.9869
    29 Epoch 6/10
    30 36s - loss: 0.0281 - acc: 0.9909 - val_loss: 0.0424 - val_acc: 0.9864
    31 Epoch 7/10
    32 36s - loss: 0.0223 - acc: 0.9930 - val_loss: 0.0328 - val_acc: 0.9893
    33 Epoch 8/10
    34 36s - loss: 0.0198 - acc: 0.9939 - val_loss: 0.0381 - val_acc: 0.9880
    35 Epoch 9/10
    36 36s - loss: 0.0156 - acc: 0.9954 - val_loss: 0.0347 - val_acc: 0.9884
    37 Epoch 10/10
    38 36s - loss: 0.0141 - acc: 0.9955 - val_loss: 0.0318 - val_acc: 0.9893
    39 CNN Error: 1.07%
    复制代码

      迭代的结果中,loss和acc为训练集的结果,val_loss和val_acc为验证机的结果。从结果上来看,效果不错,比100次迭代的MLP(1.46%)提升了0.39%,CNN的误差率为1.07%。这里的CNN的网络结构还是比较简单的,如果把CNN的结果再加几层,边复杂一代,结果是否还能提升?

      3.Larger CNN

      这一次我加了几层卷积层,代码:

    复制代码
     1 # Larger CNN 
     2 import numpy
     3 from keras.datasets import mnist
     4 from keras.models import Sequential
     5 from keras.layers import Dense
     6 from keras.layers import Dropout
     7 from keras.layers import Flatten
     8 from keras.layers.convolutional import Convolution2D
     9 from keras.layers.convolutional import MaxPooling2D
    10 from keras.utils import np_utils
    11
    12 seed = 7
    13 numpy.random.seed(seed)
    14 # load data
    15 (X_train, y_train), (X_test, y_test) = mnist.load_data()
    16 # reshape to be [samples][pixels][width][height]
    17 X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
    18 X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
    19 # normalize inputs from 0-255 to 0-1
    20 X_train = X_train / 255
    21 X_test = X_test / 255
    22 # one hot encode outputs
    23 y_train = np_utils.to_categorical(y_train)
    24 y_test = np_utils.to_categorical(y_test)
    25 num_classes = y_test.shape[1]
    26 # define the larger model
    27 def larger_model():
    28     # create model
    29     model = Sequential()
    30     model.add(Convolution2D(30, 5, 5, border_mode='valid', input_shape=(1, 28, 28), activation='relu'))
    31     model.add(MaxPooling2D(pool_size=(2, 2)))
    32     model.add(Convolution2D(15, 3, 3, activation='relu'))
    33     model.add(MaxPooling2D(pool_size=(2, 2)))
    34     model.add(Dropout(0.2))
    35     model.add(Flatten())
    36     model.add(Dense(128, activation='relu'))
    37     model.add(Dense(50, activation='relu'))
    38     model.add(Dense(num_classes, activation='softmax'))
    39     # Compile model
    40     model.summary()
    41     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    42     return model
    43 # build the model
    44 model = larger_model()
    45 # Fit the model
    46 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=69, batch_size=200, verbose=2)
    47 # Final evaluation of the model
    48 scores = model.evaluate(X_test, y_test, verbose=0)
    49 print("Large CNN Error: %.2f%%" % (100-scores[1]*100))
    复制代码

      结果:

    复制代码
    ___________________________________________________________________________________________________
    Layer (type)                     Output Shape          Param #     Connected to
    ====================================================================================================
    convolution2d_1 (Convolution2D)  (None, 30, 24, 24)    780         convolution2d_input_1[0][0]
    ____________________________________________________________________________________________________
    maxpooling2d_1 (MaxPooling2D)    (None, 30, 12, 12)    0           convolution2d_1[0][0]
    ____________________________________________________________________________________________________
    convolution2d_2 (Convolution2D)  (None, 15, 10, 10)    4065        maxpooling2d_1[0][0]
    ____________________________________________________________________________________________________
    maxpooling2d_2 (MaxPooling2D)    (None, 15, 5, 5)      0           convolution2d_2[0][0]
    ____________________________________________________________________________________________________
    dropout_1 (Dropout)              (None, 15, 5, 5)      0           maxpooling2d_2[0][0]
    ____________________________________________________________________________________________________
    flatten_1 (Flatten)              (None, 375)           0           dropout_1[0][0]
    ____________________________________________________________________________________________________
    dense_1 (Dense)                  (None, 128)           48128       flatten_1[0][0]
    ____________________________________________________________________________________________________
    dense_2 (Dense)                  (None, 50)            6450        dense_1[0][0]
    ____________________________________________________________________________________________________
    dense_3 (Dense)                  (None, 10)            510         dense_2[0][0]
    ====================================================================================================
    Total params: 59933
    ____________________________________________________________________________________________________
    Train on 60000 samples, validate on 10000 samples
    Epoch 1/10
    34s - loss: 0.3789 - acc: 0.8796 - val_loss: 0.0811 - val_acc: 0.9742
    Epoch 2/10
    34s - loss: 0.0929 - acc: 0.9710 - val_loss: 0.0462 - val_acc: 0.9854
    Epoch 3/10
    35s - loss: 0.0684 - acc: 0.9786 - val_loss: 0.0376 - val_acc: 0.9869
    Epoch 4/10
    35s - loss: 0.0546 - acc: 0.9826 - val_loss: 0.0332 - val_acc: 0.9890
    Epoch 5/10
    35s - loss: 0.0467 - acc: 0.9856 - val_loss: 0.0289 - val_acc: 0.9897
    Epoch 6/10
    35s - loss: 0.0402 - acc: 0.9873 - val_loss: 0.0291 - val_acc: 0.9902
    Epoch 7/10
    34s - loss: 0.0369 - acc: 0.9880 - val_loss: 0.0233 - val_acc: 0.9924
    Epoch 8/10
    36s - loss: 0.0336 - acc: 0.9894 - val_loss: 0.0258 - val_acc: 0.9913
    Epoch 9/10
    39s - loss: 0.0317 - acc: 0.9899 - val_loss: 0.0219 - val_acc: 0.9926
    Epoch 10/10
    40s - loss: 0.0268 - acc: 0.9916 - val_loss: 0.0220 - val_acc: 0.9919
    Large CNN Error: 0.81%
    复制代码

      效果不错,现在的准确率是99.19%

      4.最终版本

      网络结构没变,只是在每一层后面加了dropout,结果居然有显著提升。一开始迭代500次,跑死我了,结果过拟合了,然后观察到69次的时候结果就已经很好了,就选择了迭代69次。

    复制代码
     1 # Larger CNN for the MNIST Dataset
     2 import numpy
     3 from keras.datasets import mnist
     4 from keras.models import Sequential
     5 from keras.layers import Dense
     6 from keras.layers import Dropout
     7 from keras.layers import Flatten
     8 from keras.layers.convolutional import Convolution2D
     9 from keras.layers.convolutional import MaxPooling2D
    10 from keras.utils import np_utils
    11 import matplotlib.pyplot as plt
    12 from keras.constraints import maxnorm
    13 from keras.optimizers import SGD
    14 # fix random seed for reproducibility
    15 seed = 7
    16 numpy.random.seed(seed)
    17 # load data
    18 (X_train, y_train), (X_test, y_test) = mnist.load_data()
    19 # reshape to be [samples][pixels][width][height]
    20 X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
    21 X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
    22 # normalize inputs from 0-255 to 0-1
    23 X_train = X_train / 255
    24 X_test = X_test / 255
    25 # one hot encode outputs
    26 y_train = np_utils.to_categorical(y_train)
    27 y_test = np_utils.to_categorical(y_test)
    28 num_classes = y_test.shape[1]
    29 ###raw
    30 # define the larger model
    31 def larger_model():
    32     # create model
    33     model = Sequential()
    34     model.add(Convolution2D(30, 5, 5, border_mode='valid', input_shape=(1, 28, 28), activation='relu'))
    35     model.add(MaxPooling2D(pool_size=(2, 2)))
    36     model.add(Dropout(0.4))
    37     model.add(Convolution2D(15, 3, 3, activation='relu'))
    38     model.add(MaxPooling2D(pool_size=(2, 2)))
    39     model.add(Dropout(0.4))
    40     model.add(Flatten())
    41     model.add(Dense(128, activation='relu'))
    42     model.add(Dropout(0.4))
    43     model.add(Dense(50, activation='relu'))
    44     model.add(Dropout(0.4))
    45     model.add(Dense(num_classes, activation='softmax'))
    46     # Compile model
    47     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    48     return model
    49 
    50 # build the model
    51 model = larger_model()
    52 # Fit the model
    53 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=200, batch_size=200, verbose=2)
    54 # Final evaluation of the model
    55 scores = model.evaluate(X_test, y_test, verbose=0)
    56 print("Large CNN Error: %.2f%%" % (100-scores[1]*100))
    复制代码

     结果:

    复制代码
     1 ____________________________________________________________________________________________________
     2 Layer (type)                     Output Shape          Param #     Connected to
     3 ====================================================================================================
     4 convolution2d_1 (Convolution2D)  (None, 30, 24, 24)    780         convolution2d_input_1[0][0]
     5 ____________________________________________________________________________________________________
     6 maxpooling2d_1 (MaxPooling2D)    (None, 30, 12, 12)    0           convolution2d_1[0][0]
     7 ____________________________________________________________________________________________________
     8 convolution2d_2 (Convolution2D)  (None, 15, 10, 10)    4065        maxpooling2d_1[0][0]
     9 ____________________________________________________________________________________________________
    10 maxpooling2d_2 (MaxPooling2D)    (None, 15, 5, 5)      0           convolution2d_2[0][0]
    11 ____________________________________________________________________________________________________
    12 dropout_1 (Dropout)              (None, 15, 5, 5)      0           maxpooling2d_2[0][0]
    13 ____________________________________________________________________________________________________
    14 flatten_1 (Flatten)              (None, 375)           0           dropout_1[0][0]
    15 ____________________________________________________________________________________________________
    16 dense_1 (Dense)                  (None, 128)           48128       flatten_1[0][0]
    17 ____________________________________________________________________________________________________
    18 dense_2 (Dense)                  (None, 50)            6450        dense_1[0][0]
    19 ____________________________________________________________________________________________________
    20 dense_3 (Dense)                  (None, 10)            510         dense_2[0][0]
    21 ====================================================================================================
    22 Total params: 59933
    23 ____________________________________________________________________________________________________
    24 Train on 60000 samples, validate on 10000 samples
    25 Epoch 1/69
    26 34s - loss: 0.4248 - acc: 0.8619 - val_loss: 0.0832 - val_acc: 0.9746
    27 Epoch 2/69
    28 35s - loss: 0.1147 - acc: 0.9638 - val_loss: 0.0518 - val_acc: 0.9831
    29 Epoch 3/69
    30 35s - loss: 0.0887 - acc: 0.9719 - val_loss: 0.0452 - val_acc: 0.9855
    31 、、、
    32 Epoch 66/69
    33 38s - loss: 0.0134 - acc: 0.9955 - val_loss: 0.0211 - val_acc: 0.9943
    34 Epoch 67/69
    35 38s - loss: 0.0114 - acc: 0.9960 - val_loss: 0.0171 - val_acc: 0.9950
    36 Epoch 68/69
    37 38s - loss: 0.0116 - acc: 0.9959 - val_loss: 0.0192 - val_acc: 0.9956
    38 Epoch 69/69
    39 38s - loss: 0.0132 - acc: 0.9969 - val_loss: 0.0188 - val_acc: 0.9978
    40 Large CNN Error: 0.22%
    41 
    42 real    41m47.350s
    43 user    157m51.145s
    44 sys    6m5.829s
    复制代码

      这是目前的最好结果,99.78%,然而还有很多地方可以提升,下次准确率提高了再来更 。

      总结:

      1.CNN在图像识别上确实比传统的MLP有优势,比传统的机器学习算法也有优势(不过也有通过随机森林取的很好效果的)

      2.加深网络结构,即多加几层卷积层有助于提升准确率,但是也能大大降低运行速度

      3.适当加Dropout可以提高准确率

      4.激活函数最好,算了,直接说就选relu吧,没有为啥,就因为relu能避免梯度消散这一点应该选它,训练速度快等其他优点下次专门总结一篇文章再说吧。

      5.迭代次数不是越多越好,很可能会过拟合,自己可以做一个收敛曲线,keras里可以用history函数plot一下,看算法是否收敛,还是发散。

    转载地址:

    http://www.cnblogs.com/charlotte77/p/5671136.html

  • 相关阅读:
    BZOJ 1021 循环的债务
    BZOJ 1019 汉诺塔
    BZOJ 1018 堵塞的交通
    BZOJ 1017 魔兽地图
    BZOJ 1016 最小生成树计数
    Luogu 3008 [USACO11JAN]道路和飞机Roads and Planes
    Luogu 3625 [APIO2009]采油区域
    Luogu 4139 上帝与集合的正确用法
    Luogu 3629 [APIO2010]巡逻
    Luogu 3626 [APIO2009]会议中心
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/10207954.html
Copyright © 2011-2022 走看看