zoukankan      html  css  js  c++  java
  • 今天来捋一捋pytorch官方Faster R-CNN代码

    AI编辑:我是小将

    本文作者:白裳

    https://zhuanlan.zhihu.com/p/145842317

    本文已由原作者授权


    目前 pytorch 已经在 torchvision 模块集成了 FasterRCNN 和 MaskRCNN 代码。考虑到帮助各位小伙伴理解模型细节问题,本文分析一下 FasterRCNN 代码,帮助新手理解 Two-Stage 检测中的主要问题。

    这篇文章默认读者已经对 FasterRCNN 原理有一定了解。否则请先点击阅读上一篇文章:https://zhuanlan.zhihu.com/p/31426458

    torchvision 中 FasterRCNN 代码文档如下:

    https://pytorch.org/docs/stable/torchvision/models.html#faster-r-cnn

    在 python 中装好 torchvision 后,输入以下命令即可查看版本和代码位置:

    import torchvision

    print(torchvision.__version__)
    # '0.6.0'
    print(torchvision.__path__)
    # ['/usr/local/lib/python3.7/site-packages/torchvision']

    △ 代码结构

    图片

    图1

    作为 torchvision 中目标检测基类,GeneralizedRCNN 继承了 torch.nn.Module,后续 FasterRCNN 、MaskRCNN 都继承 GeneralizedRCNN。

    △ GeneralizedRCNN

    GeneralizedRCNN 继承基类 nn.Module 。首先来看看基类 GeneralizedRCNN 的代码:

    class GeneralizedRCNN(nn.Module):
    def __init__(self, backbone, rpn, roi_heads, transform):
    super(GeneralizedRCNN, self).__init__()
    self.transform = transform
    self.backbone = backbone
    self.rpn = rpn
    self.roi_heads = roi_heads
    # used only on torchscript mode
    self._has_warned = False

    @torch.jit.unused
    def eager_outputs(self, losses, detections):
    # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
    if self.training:
    return losses

    return detections

    def forward(self, images, targets=None):
    if self.training and targets is None:
    raise ValueError("In training mode, targets should be passed")
    original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])
    for img in images:
    val = img.shape[-2:]
    assert len(val) == 2
    original_image_sizes.append((val[0], val[1]))

    images, targets = self.transform(images, targets)
    features = self.backbone(images.tensors)
    if isinstance(features, torch.Tensor):
    features = OrderedDict([('0', features)])
    proposals, proposal_losses = self.rpn(images, features, targets)
    detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
    detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

    losses = {}
    losses.update(detector_losses)
    losses.update(proposal_losses)

    if torch.jit.is_scripting():
    if not self._has_warned:
    warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")
    self._has_warned = True
    return (losses, detections)
    else:
    return self.eager_outputs(losses, detections)

    对于 GeneralizedRCNN 类,其中有4个重要的接口:

    • transform

    • backbone

    • rpn

    • roi_heads

    △ transform

    # GeneralizedRCNN.forward(...)
    for img in images:
    val = img.shape[-2:]
    assert len(val) == 2
    original_image_sizes.append((val[0], val[1]))

    images, targets = self.transform(images, targets)

    图片图2 transform接口

    transform主要做2件事:

    • 将输入进行标准化(如FasterRCNN是对 图片 输入减 image_mean 再除 image_std)

    • 将图像缩放到固定大小(同时也要对应缩放 targets 中标记框 )

    需要说明,由于把缩放后的图像输入网络,那么网络输出的检测框也是在缩放后的图像上的。但是实际中我们需要的是在原始图像的检测框,为了对应起来,所以需要记录变换前original_images_sizes 。

    图片图3

    这里解释一下为何要缩放图像。对于 FasterRCNN,从纯理论上来说确实可以支持任意大小的图片。但是实际中,如果输入图像太大(如6000x4000)会直接撑爆内存。考虑到工程问题,缩放是一个比较稳妥的折衷选择。

    △ backbone + rpn + roi_heads

    图片

    图4

    完成图像缩放之后其实才算是正式进入网络流程。接下来有4个步骤:

    (1)将 transform 后的图像输入到 backbone 模块提取特征图

    # GeneralizedRCNN.forward(...)
    features = self.backbone(images.tensors)

    backbone 一般为 VGG、ResNet、MobileNet 等网络。

    (2)然后经过 rpn 模块生成 proposals 和 proposal_losses

    # GeneralizedRCNN.forward(...)
    proposals, proposal_losses = self.rpn(images, features, targets)

    (3)接着进入 roi_heads 模块(即 roi_pooling + 分类)

    # GeneralizedRCNN.forward(...)
    detections, detector_losses =
    self.roi_heads(features, proposals, images.image_sizes, targets)

    (4)最后经 postprocess 模块(进行 NMS,同时将 box 通过 original_images_size映射回原图)

    # GeneralizedRCNN.forward(...)
    detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

    △ FasterRCNN

    FasterRCNN 继承基类 GeneralizedRCNN。

    class FasterRCNN(GeneralizedRCNN):

    def __init__(self, backbone, num_classes=None,
    # transform parameters
    min_size=800, max_size=1333,
    image_mean=None, image_std=None,
    # RPN parameters
    rpn_anchor_generator=None, rpn_head=None,
    rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000,
    rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000,
    rpn_nms_thresh=0.7,
    rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3,
    rpn_batch_size_per_image=256, rpn_positive_fraction=0.5,
    # Box parameters
    box_roi_pool=None, box_head=None, box_predictor=None,
    box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100,
    box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5,
    box_batch_size_per_image=512, box_positive_fraction=0.25,
    bbox_reg_weights=None):

    out_channels = backbone.out_channels

    if rpn_anchor_generator is None:
    anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
    rpn_anchor_generator = AnchorGenerator(
    anchor_sizes, aspect_ratios
    )
    if rpn_head is None:
    rpn_head = RPNHead(
    out_channels, rpn_anchor_generator.num_anchors_per_location()[0]
    )

    rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
    rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

    rpn = RegionProposalNetwork(
    rpn_anchor_generator, rpn_head,
    rpn_fg_iou_thresh, rpn_bg_iou_thresh,
    rpn_batch_size_per_image, rpn_positive_fraction,
    rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)

    if box_roi_pool is None:
    box_roi_pool = MultiScaleRoIAlign(
    featmap_names=['0', '1', '2', '3'],
    output_size=7,
    sampling_ratio=2)

    if box_head is None:
    resolution = box_roi_pool.output_size[0]
    representation_size = 1024
    box_head = TwoMLPHead(
    out_channels * resolution ** 2,
    representation_size)

    if box_predictor is None:
    representation_size = 1024
    box_predictor = FastRCNNPredictor(
    representation_size,
    num_classes)

    roi_heads = RoIHeads(
    # Box
    box_roi_pool, box_head, box_predictor,
    box_fg_iou_thresh, box_bg_iou_thresh,
    box_batch_size_per_image, box_positive_fraction,
    bbox_reg_weights,
    box_score_thresh, box_nms_thresh, box_detections_per_img)

    if image_mean is None:
    image_mean = [0.485, 0.456, 0.406]
    if image_std is None:
    image_std = [0.229, 0.224, 0.225]
    transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

    super(FasterRCNN, self).__init__(backbone, rpn, roi_heads, transform)

    FasterRCNN 实现了 GeneralizedRCNN 中的 transform、backbone、rpn、roi_heads 接口:

    # FasterRCNN.__init__(...)
    super(FasterRCNN, self).__init__(backbone, rpn, roi_heads, transform)

    对于 transform 接口,使用 GeneralizedRCNNTransform 实现。从代码变量名可以明显看到包含:

    • 与缩放相关参数:min_size + max_size

    • 与归一化相关参数:image_mean + image_std(对输入[0, 1]减去image_mean再除以image_std)

    # FasterRCNN.__init__(...)
    if image_mean is None:
    image_mean = [0.485, 0.456, 0.406]
    if image_std is None:
    image_std = [0.229, 0.224, 0.225]
    transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

    对于 backbone 使用 ResNet50 + FPN 结构:

    def fasterrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, **kwargs):
    if pretrained:
    # no need to download the backbone if pretrained is set
    pretrained_backbone = False
    backbone = resnet_fpn_backbone('resnet50', pretrained_backbone)
    model = FasterRCNN(backbone, num_classes, **kwargs)
    if pretrained:
    state_dict = load_state_dict_from_url(model_urls['fasterrcnn_resnet50_fpn_coco'], progress=progress)
    model.load_state_dict(state_dict)
    return model

    ResNet: Deep Residual Learning for Image Recognition

    FPN: Feature Pyramid Networks for Object Detection

    图片

    图5 FPN

    接下来重点介绍 rpn 接口的实现。首先是 rpn_anchor_generator :

    # FasterRCNN.__init__(...)
    if rpn_anchor_generator is None:
    anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
    rpn_anchor_generator = AnchorGenerator(
    anchor_sizes, aspect_ratios
    )

    对于普通的 FasterRCNN 只需要将 feature_map 输入到 rpn 网络生成 proposals 即可。但是由于加入 FPN,需要将多个 feature_map 逐个输入到 rpn 网络。

    图片

    图6

    接下来看看 AnchorGenerator 具体实现:

    class AnchorGenerator(nn.Module):
    ......

    def generate_anchors(self, scales, aspect_ratios, dtype=torch.float32, device="cpu"):
    # type: (List[int], List[float], int, Device) # noqa: F821
    scales = torch.as_tensor(scales, dtype=dtype, device=device)
    aspect_ratios = torch.as_tensor(aspect_ratios, dtype=dtype, device=device)
    h_ratios = torch.sqrt(aspect_ratios)
    w_ratios = 1 / h_ratios

    ws = (w_ratios[:, None] * scales[None, :]).view(-1)
    hs = (h_ratios[:, None] * scales[None, :]).view(-1)

    base_anchors = torch.stack([-ws, -hs, ws, hs], dim=1) / 2
    return base_anchors.round()

    def set_cell_anchors(self, dtype, device):
    # type: (int, Device) -> None # noqa: F821
    ......

    cell_anchors = [
    self.generate_anchors(
    sizes,
    aspect_ratios,
    dtype,
    device
    )
    for sizes, aspect_ratios in zip(self.sizes, self.aspect_ratios)
    ]
    self.cell_anchors = cell_anchors

    首先,每个位置有 5 种 anchor_size 和 3 种 aspect_ratios,所以每个位置生成 15 个 base_anchors:

    [ -23.,  -11.,   23.,   11.]
    [ -16., -16., 16., 16.] # w = h = 32, ratio = 1
    [ -11., -23., 11., 23.]
    [ -45., -23., 45., 23.]
    [ -32., -32., 32., 32.] # w = h = 64, ratio = 1
    [ -23., -45., 23., 45.]
    [ -91., -45., 91., 45.]
    [ -64., -64., 64., 64.] # w = h = 128, ratio = 1
    [ -45., -91., 45., 91.]
    [-181., -91., 181., 91.]
    [-128., -128., 128., 128.] # w = h = 256, ratio = 1
    [ -91., -181., 91., 181.]
    [-362., -181., 362., 181.]
    [-256., -256., 256., 256.] # w = h = 512, ratio = 1
    [-181., -362., 181., 362.]

    注意 base_anchors 的中心都是 图片 点,如下图所示:

    图片

    图7 base_anchor(此图只画了32/64/128的base_anchor)

    接着来看 AnchorGenerator.grid_anchors 函数:

    # AnchorGenerator
    def grid_anchors(self, grid_sizes, strides):
    # type: (List[List[int]], List[List[Tensor]])
    anchors = []
    cell_anchors = self.cell_anchors
    assert cell_anchors is not None

    for size, stride, base_anchors in zip(
    grid_sizes, strides, cell_anchors
    ):
    grid_height, grid_width = size
    stride_height, stride_width = stride
    device = base_anchors.device

    # For output anchor, compute [x_center, y_center, x_center, y_center]
    shifts_x = torch.arange(
    0, grid_width, dtype=torch.float32, device=device
    ) * stride_width
    shifts_y = torch.arange(
    0, grid_height, dtype=torch.float32, device=device
    ) * stride_height
    shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
    shift_x = shift_x.reshape(-1)
    shift_y = shift_y.reshape(-1)
    shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)

    # For every (base anchor, output anchor) pair,
    # offset each zero-centered base anchor by the center of the output anchor.
    anchors.append(
    (shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)
    )

    return anchors

    def forward(self, image_list, feature_maps):
    # type: (ImageList, List[Tensor])
    grid_sizes = list([feature_map.shape[-2:] for feature_map in feature_maps])
    image_size = image_list.tensors.shape[-2:]
    dtype, device = feature_maps[0].dtype, feature_maps[0].device
    strides = [[torch.tensor(image_size[0] / g[0], dtype=torch.int64, device=device),
    torch.tensor(image_size[1] / g[1], dtype=torch.int64, device=device)] for g in grid_sizes]
    self.set_cell_anchors(dtype, device)
    anchors_over_all_feature_maps = self.cached_grid_anchors(grid_sizes, strides)
    ......

    在之前提到,由于有 FPN 网络,所以输入 rpn 的是多个特征。为了方便介绍,以下都是以某一个特征进行描述,其他特征类似。

    假设有 图片 的特征,首先会计算这个特征相对于输入图像的下采样倍数 stride:

    图片

    然后生成一个 图片 大小的网格,每个格子长度为 stride,如下图:

    # AnchorGenerator.grid_anchors(...)
    shifts_x = torch.arange(0, grid_width, dtype=torch.float32, device=device) * stride_width
    shifts_y = torch.arange(0, grid_height, dtype=torch.float32, device=device) * stride_height
    shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)

    图片

    图8

    然后将 base_anchors 的中心从 图片 移动到网格的点,且在网格的每个点都放置一组 base_anchors。这样就在当前 feature_map 上有了很多的 anchors。

    需要特别说明,stride 代表网络的感受野,网络不可能检测到比 feature_map 更密集的框了!所以才只会在网格中每个点设置 anchors(反过来说,如果在网格的两个点之间设置 anchors,那么就对应 feature_map 中半个点,显然不合理)。

    # AnchorGenerator.grid_anchors(...)
    anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))

    图片图9 (注:为了方便描述,这里只画了3个anchor,实际每个点有9个anchor)

    放置好 anchors 后,接下来就要调整网络,使网络输出能够判断每个 anchor 是否有目标,同时还要有 bounding box regression 需要的4个值 图片 。

    class RPNHead(nn.Module):
    def __init__(self, in_channels, num_anchors):
    super(RPNHead, self).__init__()
    self.conv = nn.Conv2d(
    in_channels, in_channels, kernel_size=3, stride=1, padding=1
    )
    self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
    self.bbox_pred = nn.Conv2d(
    in_channels, num_anchors * 4, kernel_size=1, stride=1
    )

    def forward(self, x):
    logits = []
    bbox_reg = []
    for feature in x:
    t = F.relu(self.conv(feature))
    logits.append(self.cls_logits(t))
    bbox_reg.append(self.bbox_pred(t))
    return logits, bbox_reg

    假设 feature 的大小 图片 ,每个点 图片 个 anchor。从 RPNHead 的代码中可以明显看到:

    • 首先进行 3x3 卷积

    • 然后对 feature 进行卷积,输出 cls_logits 大小是 图片 ,对应每个 anchor 是否有目标;

    • 同时feature 进行卷积,输出 bbox_pred 大小是 图片 ,对应每个点的4个框位置回归信息 图片 。

    # RPNHead.__init__(...)
    self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
    self.bbox_pred = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1, stride=1)

    图片图10(注:为了方便描述,这里只画了3个anchor,实际每个点有9个anchor)

    上述过程只是单个 feature_map 的处理流程。对于 FPN 网络的输出的多个大小不同的 feature_maps,每个特征图都会按照上述过程计算 stride 和网格,并设置 anchors。当处理完后获得密密麻麻的各种 anchors 了。

    接下来进入 RegionProposalNetwork 类:

    # FasterRCNN.__init__(...)
    rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
    rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

    # rpn_anchor_generator 生成anchors
    # rpn_head 调整feature_map获得cls_logits+bbox_pred
    rpn = RegionProposalNetwork(
    rpn_anchor_generator, rpn_head,
    rpn_fg_iou_thresh, rpn_bg_iou_thresh,
    rpn_batch_size_per_image, rpn_positive_fraction,
    rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)

    RegionProposalNetwork 类的用是:

    • test 阶段 :计算有目标的 anchor 并进行框回归生成 proposals,然后 NMS

    • train 阶段 :除了上面的作用,还计算 rpn loss

    class RegionProposalNetwork(torch.nn.Module):
    .......

    def forward(self, images, features, targets=None):
    features = list(features.values())
    objectness, pred_bbox_deltas = self.head(features)
    anchors = self.anchor_generator(images, features)

    num_images = len(anchors)
    num_anchors_per_level_shape_tensors = [o[0].shape for o in objectness]
    num_anchors_per_level = [s[0] * s[1] * s[2] for s in num_anchors_per_level_shape_tensors]
    objectness, pred_bbox_deltas =
    concat_box_prediction_layers(objectness, pred_bbox_deltas)
    # apply pred_bbox_deltas to anchors to obtain the decoded proposals
    # note that we detach the deltas because Faster R-CNN do not backprop through
    # the proposals
    proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
    proposals = proposals.view(num_images, -1, 4)
    boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)

    losses = {}
    if self.training:
    assert targets is not None
    labels, matched_gt_boxes = self.assign_targets_to_anchors(anchors, targets)
    regression_targets = self.box_coder.encode(matched_gt_boxes, anchors)
    loss_objectness, loss_rpn_box_reg = self.compute_loss(
    objectness, pred_bbox_deltas, labels, regression_targets)
    losses = {
    "loss_objectness": loss_objectness,
    "loss_rpn_box_reg": loss_rpn_box_reg,
    }
    return boxes, losses

    具体来看,首先计算有目标的 anchor 并进行框回归生成 proposals :

    # RegionProposalNetwork.forward(...)
    objectness, pred_bbox_deltas = self.head(features)
    anchors = self.anchor_generator(images, features)
    ......
    proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
    proposals = proposals.view(num_images, -1, 4)

    然后依照 objectness 置信由大到小度排序(优先提取更可能包含目标的的),并 NMS,生成 boxes (即 NMS 后的 proposal boxes ) :

    # RegionProposalNetwork.forward(...)
    boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)

    如果是训练阶段,还要将 boxes 与 anchors 进行匹配,计算 cls_logits 的损失 loss_objectness,同时计算 bbox_pred 的损失 loss_rpn_box_reg。

    在 RegionProposalNetwork 之后已经生成了 boxes ,接下来就要提取 boxes 内的特征进行 roi_pooling :

    roi_heads = RoIHeads(
    # Box
    box_roi_pool, box_head, box_predictor,
    box_fg_iou_thresh, box_bg_iou_thresh,
    box_batch_size_per_image, box_positive_fraction,
    bbox_reg_weights,
    box_score_thresh, box_nms_thresh, box_detections_per_img)

    这里一点问题是如何计算 box 所属的 feature_map:

    • 对于原始 FasterRCNN,只在 backbone 的最后一层 feature_map 提取 box 对应特征;

    • 当加入 FPN 后 backbone 会输出多个特征图,需要计算当前 boxes 对应于哪一个特征。

    如下图:

    图片图11

    class MultiScaleRoIAlign(nn.Module):
    ......

    def infer_scale(self, feature, original_size):
    # type: (Tensor, List[int])
    # assumption: the scale is of the form 2 ** (-k), with k integer
    size = feature.shape[-2:]
    possible_scales = torch.jit.annotate(List[float], [])
    for s1, s2 in zip(size, original_size):
    approx_scale = float(s1) / float(s2)
    scale = 2 ** float(torch.tensor(approx_scale).log2().round())
    possible_scales.append(scale)
    assert possible_scales[0] == possible_scales[1]
    return possible_scales[0]

    def setup_scales(self, features, image_shapes):
    # type: (List[Tensor], List[Tuple[int, int]])
    assert len(image_shapes) != 0
    max_x = 0
    max_y = 0
    for shape in image_shapes:
    max_x = max(shape[0], max_x)
    max_y = max(shape[1], max_y)
    original_input_shape = (max_x, max_y)

    scales = [self.infer_scale(feat, original_input_shape) for feat in features]
    # get the levels in the feature map by leveraging the fact that the network always
    # downsamples by a factor of 2 at each level.
    lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item()
    lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item()
    self.scales = scales
    self.map_levels = initLevelMapper(int(lvl_min), int(lvl_max))

    首先计算每个 feature_map 相对于网络输入 image 的下采样倍率 scale。其中 infer_scale 函数采用如下的近似公式:

    图片

    该公式相当于做了一个简单的映射,将不同的 feature_map 与 image 大小比映射到附近的尺度:

    图片

    图12

    例如对于 FasterRCNN 实际值为:

    图片

    之后设置 lvl_min=2 和 lvl_max=5:

    # MultiScaleRoIAlign.setup_scales(...)
    # get the levels in the feature map by leveraging the fact that the network always
    # downsamples by a factor of 2 at each level.
    lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item()
    lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item()

    接着使用 FPN 原文中的公式计算 box 所在 anchor(其中 图片 , 图片 为 box 面积):

    图片

    class LevelMapper(object)
    def __init__(self, k_min, k_max, canonical_scale=224, canonical_level=4, eps=1e-6):
    self.k_min = k_min # lvl_min=2
    self.k_max = k_max # lvl_max=5
    self.s0 = canonical_scale # 224
    self.lvl0 = canonical_level # 4
    self.eps = eps

    def __call__(self, boxlists):
    s = torch.sqrt(torch.cat([box_area(boxlist) for boxlist in boxlists]))

    # Eqn.(1) in FPN paper
    target_lvls = torch.floor(self.lvl0 + torch.log2(s / self.s0) + torch.tensor(self.eps, dtype=s.dtype))
    target_lvls = torch.clamp(target_lvls, min=self.k_min, max=self.k_max)
    return (target_lvls.to(torch.int64) - self.k_min).to(torch.int64)

    其中 torch.clamp(input, min, max) → Tensor 函数的作用是截断,防止越界:

    图片

    可以看到,通过 LevelMapper 类将不同大小的 box 定位到某个 feature_map,如下图。之后就是按照图11中的流程进行 roi_pooling 操作。

    图片图13

    在确定 proposal box 所属 FPN 中哪个 feature_map 之后,接着来看 MultiScaleRoIAlign 如何进行 roi_pooling 操作:

    class MultiScaleRoIAlign(nn.Module):
    ......

    def forward(self, x, boxes, image_shapes):
    # type: (Dict[str, Tensor], List[Tensor], List[Tuple[int, int]]) -> Tensor
    x_filtered = []
    for k, v in x.items():
    if k in self.featmap_names:
    x_filtered.append(v)
    num_levels = len(x_filtered)
    rois = self.convert_to_roi_format(boxes)
    if self.scales is None:
    self.setup_scales(x_filtered, image_shapes)

    scales = self.scales
    assert scales is not None

    # 没有 FPN 时,只有1/32的最后一个feature_map进行roi_pooling
    if num_levels == 1:
    return roi_align(
    x_filtered[0], rois,
    output_size=self.output_size,
    spatial_scale=scales[0],
    sampling_ratio=self.sampling_ratio
    )

    # 有 FPN 时,有4个feature_map进行roi_pooling
    # 首先按照
    mapper = self.map_levels
    assert mapper is not None

    levels = mapper(boxes)

    num_rois = len(rois)
    num_channels = x_filtered[0].shape[1]

    dtype, device = x_filtered[0].dtype, x_filtered[0].device
    result = torch.zeros(
    (num_rois, num_channels,) + self.output_size,
    dtype=dtype,
    device=device,
    )

    tracing_results = []
    for level, (per_level_feature, scale) in enumerate(zip(x_filtered, scales)):
    idx_in_level = torch.nonzero(levels == level).squeeze(1)
    rois_per_level = rois[idx_in_level]

    result_idx_in_level = roi_align(
    per_level_feature, rois_per_level,
    output_size=self.output_size,
    spatial_scale=scale, sampling_ratio=self.sampling_ratio)

    if torchvision._is_tracing():
    tracing_results.append(result_idx_in_level.to(dtype))
    else:
    result[idx_in_level] = result_idx_in_level

    if torchvision._is_tracing():
    result = _onnx_merge_levels(levels, tracing_results)

    return result

    在 MultiScaleRoIAlign.forward(...) 函数可以看到:

    • 没有 FPN 时,只有1/32的最后一个 feature_map 进行 roi_pooling

            if num_levels == 1:
    return roi_align(
    x_filtered[0], rois,
    output_size=self.output_size,
    spatial_scale=scales[0],
    sampling_ratio=self.sampling_ratio
    )
    • 有 FPN 时,有4个 图片 的 feature maps 参加计算。首先计算每个每个 box 所属哪个 feature map ,再在所属 feature map 进行 roi_pooling

            # 首先计算每个每个 box 所属哪个 feature map
    levels = mapper(boxes)
    ......

    # 再在所属 feature map 进行 roi_pooling
    # 即 idx_in_level = torch.nonzero(levels == level).squeeze(1)
    for level, (per_level_feature, scale) in enumerate(zip(x_filtered, scales)):
    idx_in_level = torch.nonzero(levels == level).squeeze(1)
    rois_per_level = rois[idx_in_level]

    result_idx_in_level = roi_align(
    per_level_feature, rois_per_level,
    output_size=self.output_size,
    spatial_scale=scale, sampling_ratio=self.sampling_ratio)

    之后就获得了所谓的 7x7 特征(在 FasterRCNN.__init__(...) 中设置了 output_size=7)。需要说明,原始 FasterRCNN 应该是使用 roi_pooling,但是这里使用 roi_align 代替以提升检测器性能。

    对于 torchvision.ops.roi_align 函数输入的参数,分别为:

    • per_level_feature 代表 FPN 输出的某一 feature_map

    • rois_per_level 为该特征 feature_map 对应的所有 proposal boxes(之前计算 level得到)

    • output_size=7 代表输出为 7x7

    • spatial_scale 代表特征 feature_map 相对输入 image 的下采样尺度(如 1/4,1/8,...)

    • sampling_ratio 为 roi_align 采样率,有兴趣的读者请自行查阅 MaskRCNN 文章

    接下来就是将特征转为最后针对 box 的类别信息(如人、猫、狗、车)和进一步的框回归信息。

    class TwoMLPHead(nn.Module):

    def __init__(self, in_channels, representation_size):
    super(TwoMLPHead, self).__init__()

    self.fc6 = nn.Linear(in_channels, representation_size)
    self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
    x = x.flatten(start_dim=1)

    x = F.relu(self.fc6(x))
    x = F.relu(self.fc7(x))

    return x


    class FastRCNNPredictor(nn.Module):

    def __init__(self, in_channels, num_classes):
    super(FastRCNNPredictor, self).__init__()
    self.cls_score = nn.Linear(in_channels, num_classes)
    self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
    if x.dim() == 4:
    assert list(x.shape[2:]) == [1, 1]
    x = x.flatten(start_dim=1)
    scores = self.cls_score(x)
    bbox_deltas = self.bbox_pred(x)

    return scores, bbox_deltas

    首先 TwoMLPHead 将 7x7 特征经过两个全连接层转为 1024,然后 FastRCNNPredictor 将每个 box 对应的 1024 维特征转为 cls_score 和 bbox_pred :

    图片图14

    显然 cls_score 后接 softmax 即为类别概率,可以确定 box 的类别;在确定类别后,在 bbox_pred 中对应类别的 图片 4个值即为第二次 bounding box regression 需要的4个偏移值。

    简单的说,带有FPN的FasterRCNN网络结构可以用下图表示:

    图片

    图15

    △ 关于训练

    FasterRCNN模型在两处地方有损失函数:

    • 在 RegionProposalNetwork 类,需要判别 anchor 中是否包含目标从而生成 proposals,这里需要计算 loss

    • 在 RoIHeads 类,对 roi_pooling 后的全连接生成的 cls_score 和 bbox_pred 进行训练,也需要计算 loss

    首先来看 RegionProposalNetwork 类中的 assign_targets_to_anchors 函数。

    def assign_targets_to_anchors(self, anchors, targets):
    # type: (List[Tensor], List[Dict[str, Tensor]])
    labels = []
    matched_gt_boxes = []
    for anchors_per_image, targets_per_image in zip(anchors, targets):
    gt_boxes = targets_per_image["boxes"]

    if gt_boxes.numel() == 0:
    # Background image (negative example)
    device = anchors_per_image.device
    matched_gt_boxes_per_image = torch.zeros(anchors_per_image.shape, dtype=torch.float32, device=device)
    labels_per_image = torch.zeros((anchors_per_image.shape[0],), dtype=torch.float32, device=device)
    else:
    match_quality_matrix = box_ops.box_iou(gt_boxes, anchors_per_image)
    matched_idxs = self.proposal_matcher(match_quality_matrix)
    # get the targets corresponding GT for each proposal
    # NB: need to clamp the indices because we can have a single
    # GT in the image, and matched_idxs can be -2, which goes
    # out of bounds
    matched_gt_boxes_per_image = gt_boxes[matched_idxs.clamp(min=0)]

    labels_per_image = matched_idxs >= 0
    labels_per_image = labels_per_image.to(dtype=torch.float32)
    # Background (negative examples)
    bg_indices = matched_idxs == self.proposal_matcher.BELOW_LOW_THRESHOLD
    labels_per_image[bg_indices] = torch.tensor(0.0)

    # discard indices that are between thresholds
    inds_to_discard = matched_idxs == self.proposal_matcher.BETWEEN_THRESHOLDS
    labels_per_image[inds_to_discard] = torch.tensor(-1.0)

    labels.append(labels_per_image)
    matched_gt_boxes.append(matched_gt_boxes_per_image)
    return labels, matched_gt_boxes

    当图像中没有 gt_boxes 时,设置所有 anchor 都为 background(即 label 为 0):

    if gt_boxes.numel() == 0
    # Background image (negative example)
    device = anchors_per_image.device
    matched_gt_boxes_per_image = torch.zeros(anchors_per_image.shape, dtype=torch.float32, device=device)
    labels_per_image = torch.zeros((anchors_per_image.shape[0],), dtype=torch.float32, device=device)

    当图像中有 gt_boxes 时,计算 anchor 与 gt_box 的 IOU:

    • 选择 IOU < 0.3 的 anchor 为 background,标签为 0

    labels_per_image[bg_indices] = torch.tensor(0.0)
    • 选择 IOU > 0.7 的 anchor 为 foreground,标签为 1

    labels_per_image = matched_idxs >= 0
    • 忽略 0.3 < IOU < 0.7 的 anchor,不参与训练

    从 FasterRCNN 类的 __init__ 函数默认参数就可以清晰的看到这一点:

    rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3,

    接着来看 RoIHeads 类中的 assign_targets_to_proposals 函数。

    def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels):
    # type: (List[Tensor], List[Tensor], List[Tensor])
    matched_idxs = []
    labels = []
    for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels):

    if gt_boxes_in_image.numel() == 0:
    # Background image
    device = proposals_in_image.device
    clamped_matched_idxs_in_image = torch.zeros(
    (proposals_in_image.shape[0],), dtype=torch.int64, device=device
    )
    labels_in_image = torch.zeros(
    (proposals_in_image.shape[0],), dtype=torch.int64, device=device
    )
    else:
    # set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands
    match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image)
    matched_idxs_in_image = self.proposal_matcher(match_quality_matrix)

    clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0)

    labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]
    labels_in_image = labels_in_image.to(dtype=torch.int64)

    # Label background (below the low threshold)
    bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD
    labels_in_image[bg_inds] = torch.tensor(0)

    # Label ignore proposals (between low and high thresholds)
    ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS
    labels_in_image[ignore_inds] = torch.tensor(-1) # -1 is ignored by sampler

    matched_idxs.append(clamped_matched_idxs_in_image)
    labels.append(labels_in_image)
    return matched_idxs, labels

    与 assign_targets_to_anchors 不同,该函数设置:

    box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5,
    • IOU > 0.5 的 proposal 为 foreground,标签为对应的 class_id

    labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]

    这里与上面不同:RegionProposalNetwork 只需要判断 anchor 是否有目标,正类别为1;RoIHeads 需要判断 proposal 的具体类别,所以正类别为具体的 class_id。

    • IOU < 0.5 的为 background,标签为 0

    labels_in_image[bg_inds] = torch.tensor(0)

    * 写在最后

    本文简要的介绍了 torchvision 中的 FasterRCNN 实现,并分析我认为重要的知识点。写这篇文章的目的是为阅读代码困难的小伙伴做个指引,鼓励入门新手能够多看看代码实现。若要真正的理解模型(不被面试官问住),要是要看代码!


    推荐阅读

    PyTorch 源码解读之 torch.autograd

    CondInst:性能和速度均超越Mask RCNN的实例分割模型

    centerX: 用新的视角的方式打开CenterNet

    mmdetection最小复刻版(十一):概率Anchor分配机制PAA深入分析

    MMDetection新版本V2.7发布,支持DETR,还有YOLOV4在路上!

    CNN:我不是你想的那样

    TF Object Detection 终于支持TF2了!

    无需tricks,知识蒸馏提升ResNet50在ImageNet上准确度至80%+

    不妨试试MoCo,来替换ImageNet上pretrain模型!

    重磅!一文深入深度学习模型压缩和加速

    从源码学习Transformer!

    mmdetection最小复刻版(七):anchor-base和anchor-free差异分析

    mmdetection最小复刻版(四):独家yolo转化内幕

  • 相关阅读:
    如何查看python的当前版本号
    Android数据库程序开发必备工具SqliteDev 狼人:
    Android四种Activity的加载模式 狼人:
    20+ 个很棒的 jQuery 文件上传插件或教程(此文值得“推荐”和“收藏”) 狼人:
    艾伟:10分钟去除天天团购系统版权 狼人:
    WIN7,server2008 IIS 伪静态 不能显示特殊图片 加号 减号 “+”,""号的图片需要转义才可以显示 狼人:
    近百余款最新HTML5应用案例给大伙儿共享了 狼人:
    shopex李钟伟:独立电子商务发展与网络购物 狼人:
    《天将客户关系管理系统》 狼人:
    Shopex V4.8.4 V4.8.5 后台拿Shell 0Days 狼人:
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/14356218.html
Copyright © 2011-2022 走看看