zoukankan      html  css  js  c++  java
  • Tensorflow学习教程普通神经网络对mnist数据集分类

    首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元

    代码如下

    复制代码
    #coding:utf-8
    import  tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
    #每个批次的大小
    batch_size = 100
    #计算一共有多少个批次
    n_batch =  mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32, [None,784]) #输入图像
    y = tf.placeholder(tf.float32, [None,10]) #输入标签
    
    #创建一个简单的神经网络 784个像素点对应784个数  因此输入层是784个神经元 输出层是10个神经元 不含隐层 
    #最后准确率在92%左右
    W = tf.Variable(tf.zeros([784,10])) #生成784行 10列的全0矩阵
    b = tf.Variable(tf.zeros([1,10])) 
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y-prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在布尔型列表中
    #argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(21): #21个epoch 把所有的图片训练21次
            for batch in range(n_batch): #
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels}) 
            print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))   
    复制代码

    结果如下

    复制代码
    Iter 0,Testing Accuracy 0.8304
    Iter 1,Testing Accuracy 0.8704
    Iter 2,Testing Accuracy 0.8821
    Iter 3,Testing Accuracy 0.8876
    Iter 4,Testing Accuracy 0.8932
    Iter 5,Testing Accuracy 0.8968
    Iter 6,Testing Accuracy 0.8995
    Iter 7,Testing Accuracy 0.9019
    Iter 8,Testing Accuracy 0.9033
    Iter 9,Testing Accuracy 0.9048
    Iter 10,Testing Accuracy 0.9065
    Iter 11,Testing Accuracy 0.9074
    Iter 12,Testing Accuracy 0.9084
    Iter 13,Testing Accuracy 0.909
    Iter 14,Testing Accuracy 0.9094
    Iter 15,Testing Accuracy 0.9112
    Iter 16,Testing Accuracy 0.9117
    Iter 17,Testing Accuracy 0.9128
    Iter 18,Testing Accuracy 0.9127
    Iter 19,Testing Accuracy 0.9132
    Iter 20,Testing Accuracy 0.9144
    复制代码

     接下来是含一个隐层的神经网络,输入层是784个神经元,两个隐层都是100个神经元,输出层是10个神经元,迭代500次,最后准确率在88%左右,汗。。。。准确率反而降低了,慢慢调参吧

    复制代码
    #coding:utf-8
    import  tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
    #每个批次的大小
    batch_size = 50
    #计算一共有多少个批次
    n_batch =  mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32, [None,784]) #输入图像
    y = tf.placeholder(tf.float32, [None,10]) #输入标签
    
    
    #定义神经网络中间层
    Weights_L1 = tf.Variable(tf.random_normal([784,100]))
    biase_L1 = tf.Variable(tf.zeros([1,100])) 
    Wx_plus_b_L1 = tf.matmul(x, Weights_L1)+biase_L1 
    L1 = tf.nn.tanh(Wx_plus_b_L1) #使用正切函数作为激活函数 
    
    Weights_L2 = tf.Variable(tf.random_normal([100,100]))
    biase_L2 = tf.Variable(tf.zeros([1,100])) 
    Wx_plus_b_L2 = tf.matmul(L1, Weights_L2)+biase_L2 
    L2 = tf.nn.tanh(Wx_plus_b_L2) #使用正切函数作为激活函数 
    
    #定义神经网络输出层
    Weights_L3 = tf.Variable(tf.random_normal([100,10]))
    biase_L3 = tf.Variable(tf.zeros([1,10]))
    Wx_plus_b_L3 = tf.matmul(L2,Weights_L3) + biase_L3
    prediction = tf.nn.tanh(Wx_plus_b_L3)
    
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y-prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在布尔型列表中
    #argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(500): 
            for batch in range(n_batch):             batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels}) 
            print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))   
    复制代码
    复制代码
    Iter 487,Testing Accuracy 0.8847
    Iter 488,Testing Accuracy 0.8853
    Iter 489,Testing Accuracy 0.878
    Iter 490,Testing Accuracy 0.8861
    Iter 491,Testing Accuracy 0.8863
    Iter 492,Testing Accuracy 0.8784
    Iter 493,Testing Accuracy 0.8855
    Iter 494,Testing Accuracy 0.8787
    Iter 495,Testing Accuracy 0.881
    Iter 496,Testing Accuracy 0.8837
    Iter 497,Testing Accuracy 0.8817
    Iter 498,Testing Accuracy 0.8837
    Iter 499,Testing Accuracy 0.8866
  • 相关阅读:
    Java生鲜电商平台-服务化后的互联网架构实战(针对生鲜电商小程序或者APP)
    你有一份新的C++书单,请注意查收!
    想了解大数据的鼻祖Hadoop技术栈,这里有一份优质书单推荐!
    程序员的健康问题终于有救了,有个资深程序员写了本《程序员健康指南》!
    《程序员如何优雅地挣零花钱》电子书免费开源!!!
    学习设计模式,你需要这样一份书单!
    《自拍教程36》段位三 Python面向对象类
    《自拍教程35》段位二 Python面向过程函数
    《自拍教程34》段位一 Python批处理脚本
    《自拍教程33》案例篇 内容介绍
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/9962541.html
Copyright © 2011-2022 走看看