zoukankan      html  css  js  c++  java
  • ZOJ 3728 Collision

    ---恢复内容开始---

    今天无事水一水,结果就看到这个水题了!

    题意思是 有俩个区域如图

    求在俩个圆之间的运动时间 给出 初始的开始点和速度的矢量式;而且这个点 不再俩个圆之间的区域,且碰到内测园会反弹:

    在大大物实验的时候记得学过为了减少误差 和简易计算可以:把这个小圆看成质点,并把固定园的半径加上小圆的半径。

      其实就是求 与俩个圆与射线的交点! 代码如下:()

      

    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <cstdlib>
    #include <cstdio>
    using namespace std;
    struct point
    {
        double x,y;
        point (double x=0,double y=0):x(x),y(y){}
    };
    typedef point Vector;
    const double eps=1e-8;
    int dcmp(double x)
    {
        if(fabs(x)<eps) return 0;
        return x<0?-1:1;
    }
    Vector operator + (Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
    Vector operator - (Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
    Vector operator * (Vector a,double b){return Vector(a.x*b,a.y*b);}
    
    double det(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
    double dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
    double lenth(Vector a){return sqrt(dot(a,a));}
    struct line
    {
        point p;
        Vector v;
        double angle;
        line(){}
        line(point p,Vector v):p(p),v(v){}
        bool operator <(const line &rht)const
        {
            return angle<rht.angle;
        }
    };
    struct circle
    {
        point c;
        double r;
        circle(){c=point(0.0,0.0);}
        circle(point c,double r):c(c),r(r){}
        point Point(double rad)
        {
            return point(c.x+cos(rad)*r,c.y+sin(rad)*r);
        }
    };
    int get_circle_intersection(line L,circle C,double &t1,double &t2)
    {
        t1=t2=0;
        double a=L.v.x, b=L.p.x-C.c.x,c=L.v.y,d=L.p.y-C.c.y;
    
        double e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-C.r*C.r;
    
        double detle = f*f-4*e*g;
    
        if(dcmp(detle)<0) return 0;
        if(dcmp(detle)==0) {t1=t2=-f/(2*e);return 1;}
        t1=(-f-sqrt(detle)) /(2*e);
        t2=(-f+sqrt(detle)) /(2*e);
        if(dcmp(t1)<0 || dcmp(t2)<0) return 0;//按照速度的反方向才可以和圆相交
        return 2;
    }
    int main()
    {
        double t1,t2;
        double x1,x2;
        line tmp;
        circle tmp1;
        circle tmp2;
        double Rm, R, r;
        while(~scanf("%lf %lf %lf %lf %lf %lf %lf",&Rm,&R,&r,&tmp.p.x,&tmp.p.y,&tmp.v.x,&tmp.v.y))
        {
            Rm+=r;R+=r;
            tmp1.r=Rm;
            tmp2.r=R;
            int count1=get_circle_intersection(tmp,tmp1,t1,t2);
            int count2=get_circle_intersection(tmp,tmp2,x1,x2);
            if(count2==0)printf("0.00
    ");
            else
                printf("%.3lf
    ",fabs(x2-x1)-fabs(t1-t2));// 因为直线式点+向量(和速度一样)所以减法就可以了
        }
        return 0;
    }
    

      

  • 相关阅读:
    通过通过url routing解决UIViewController跳转依赖
    vs2010下配置CUDA出现kernel launch failed问题,内核无效
    ganglia监控自己定义metric实践
    faq
    Android进阶图片处理之三级缓存方案
    操作系统 内存管理(一)
    rocketmq消费队列代码
    网页固定側栏的做法
    web爬虫之登录google paly 商店
    C之内存地址
  • 原文地址:https://www.cnblogs.com/shuly/p/3751058.html
Copyright © 2011-2022 走看看