Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / ___2__ ___8__ / / 0 _4 7 9 / 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
题目大意:给出两个二叉树的结点,寻找这两个结点最近的那个公共父结点(LCA)。比如如图,结点“2”和“8”的LCA是6,结点“2”和“4”的LCA是2。
解题思路:
这题要结合二叉树的规律,即左孩子小于根结点小于右孩子。所以当给出的结点p和q,如果p,q<root,则LCA必在左子树;如果p<root<q,则LCA为root;如果root<p,q,则LCA必在右子树。
结合三种情况,首先求出结点p和结点q中较大的那个,与root进行比较,如果比root小,遍历左子树;如果比root大,遍历右子树;都不满足,返回root。
AC代码:
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(!root || !p || !q)return NULL;
if(p->val < root->val && q->val < root->val)
lowestCommonAncestor(root->left,p,q);
else if(p->val > root->val && q->val > root->val)
lowestCommonAncestor(root->right,p,q);
else
return root;
}
};