zoukankan      html  css  js  c++  java
  • 模式识别 之 BP算法 (二)

    调试模糊神经网络的中间产物: 


    /////////////////////////////
    // 五层结构
    /////////////////////////////


    #define InputN (2)

    #define HideN_0 (InputN*2)
    #define HideN_1 (InputN*2)
    #define HideN_2 (InputN*2)

    #define OutN (1)


    typedef struct __FuzzyBP_DATA__
    {
    double Input[InputN];
    double Teach[OutN];
    }FuzzyBP_DATA_t;

    typedef struct __FuzzyBP_t__
    {
    double y[OutN];

    double xOut[InputN];
    double hOut_0[HideN_0];
    double hOut_1[HideN_1];
    double hOut_2[HideN_2];
    double yOut[OutN];

    double h0_delta[HideN_0];
    double h1_delta[HideN_1];
    double h2_delta[HideN_2];
    double y_delta[OutN];

    double wh0[InputN][HideN_0]; // 权值
    double wh1[HideN_0][HideN_1]; // 权值
    double wh2[HideN_1][HideN_2]; // 权值
    double v[HideN_2][OutN]; //

    double deltawh0[InputN][HideN_0]; // 权值
    double deltawh1[HideN_0][HideN_1]; // 权值
    double deltawh2[HideN_1][HideN_2]; // 权值
    double deltav[HideN_2][OutN]; //


    double err;
    double errLimit;

    double alpha;
    double beta;

    int maxLoopNum;
    }FuzzyBP_t;


    double fuction_lizhu(double x, double c,double u)
    {
    double tmp ;
    tmp = ( (x - c)*(x - c) ) /(u*u);
    tmp = exp(-tmp);
    return tmp;
    }

    double fuction_lizhuC(double x, double c,double u)
    {
    double tmp ;
    tmp = ( (x - c)*(x - c) ) /(u*u);
    tmp = exp( -tmp)*2*(x - c)/(u*u);
    return tmp;
    }
    double fuction_lizhuU(double x, double c,double u)
    {
    double tmp ;
    tmp = ( (x - c)*(x - c) ) /(u*u);
    tmp = -exp( -tmp)*2*(x - c)*(x - c)/(u*u*u);
    return tmp;
    }


    double fuction_sigmod(double val)
    {
    return 1/(1 + exp(-val));
    }

    void FuzzyBP_XunLian(FuzzyBP_t *pBp, FuzzyBP_DATA_t *pData, int dataNum)
    {

    for (int i=0; i<InputN; i++)
    {
    for (int j = 0; j<HideN_0; j++)
    {
    pBp->wh0[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltawh0[i][j] = 0.0;
    }
    }


    for (int i=0; i<HideN_0; i++)
    {
    for (int j = 0; j<HideN_1; j++)
    {
    pBp->wh1[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltawh1[i][j] = 0.0;
    }
    }

    for (int i=0; i<HideN_1; i++)
    {
    for (int j = 0; j<HideN_2; j++)
    {
    pBp->wh2[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltawh2[i][j] = 0.0;
    }
    }


    for (int i=0; i<HideN_0; i++)
    {
    for (int j = 0; j<OutN; j++)
    {
    pBp->v[i][j] = (rand()/32767.0)*2 - 1;
    pBp->deltav[i][j] = 0.0;
    }
    }


    int loop = 0;
    while( loop < pBp->maxLoopNum)
    {

    pBp->err = 0.0;

    for (int m = 0; m<dataNum; m++)
    {

    for (int i=0; i<OutN; i++)
    {
    pBp->y[i] = pData[m].Teach[i];
    }


    /////////////////////////////////////
    // 正向传播
    /////////////////////////////////////

    // 输入层
    for (int i=0; i<InputN; i++)
    {
    pBp->xOut[i] = pData[m].Input[i];
    }

    // 隐藏层
    for (int i=0; i<HideN_0; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<InputN; j++)
    {
    sumTemp += pBp->wh0[j][i] * pBp->xOut[j];
    }
    pBp->hOut_0[i] = tanh(sumTemp);
    }


    for (int i=0; i<HideN_1; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_0; j++)
    {
    sumTemp += pBp->wh1[j][i] * pBp->hOut_0[j];
    }
    pBp->hOut_1[i] = tanh(sumTemp);
    }


    for (int i=0; i<HideN_2; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_1; j++)
    {
    sumTemp += pBp->wh2[j][i] * pBp->hOut_1[j];
    }
    pBp->hOut_2[i] = tanh(sumTemp);
    }


    // 输出层
    for (int i=0; i<OutN; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_2; j++)
    {
    sumTemp += pBp->v[j][i] * pBp->hOut_2[j];
    }
    pBp->yOut[i] = fuction_sigmod(sumTemp);
    }


    /////////////////////////////////////
    // 误差传播
    /////////////////////////////////////
    for (int i=0; i< OutN; i++)
    {
    double errTemp = pBp->y[i] - pBp->yOut[i];
    pBp->y_delta[i] = errTemp * fuction_sigmod(pBp->yOut[i]) * ( 1.0 - fuction_sigmod(pBp->yOut[i]));
    pBp->err += errTemp * errTemp;
    }


    for (int i=0; i<HideN_2; i++)
    {
    double errTemp = 0.0;
    for (int j=0; j<OutN; j++)
    {
    errTemp += pBp->y_delta[j] * pBp->v[i][j];
    }
    pBp->h2_delta[i] = errTemp * (1-tanh(pBp->hOut_2[i])*tanh(pBp->hOut_2[i])) ;
    }


    for (int i=0; i<HideN_1; i++)
    {
    double errTemp = 0.0;
    for (int j=0; j<HideN_2; j++)
    {
    errTemp += pBp->h2_delta[j] * pBp->wh2[i][j];
    }
    pBp->h1_delta[i] = errTemp * (1-tanh(pBp->hOut_1[i])*tanh(pBp->hOut_1[i])) ;
    }


    for (int i=0; i<HideN_0; i++)
    {
    double errTemp = 0.0;
    for (int j=0; j<HideN_1; j++)
    {
    errTemp += pBp->h1_delta[j] * pBp->wh1[i][j];
    }
    pBp->h0_delta[i] = errTemp * (1-tanh(pBp->hOut_0[i])*tanh(pBp->hOut_0[i])) ;
    }



    /////////////////////////////////////
    // 参数修正
    /////////////////////////////////////
    for (int i=0; i<OutN; i++)
    {
    for (int j = 0; j<HideN_2; j++)
    {
    pBp->deltav[j][i] = pBp->alpha * pBp->deltav[j][i] + pBp->beta * pBp->y_delta[i] * pBp->hOut_2[j];
    pBp->v[j][i] += pBp->deltav[j][i];
    }
    }

    for (int i=0; i<HideN_2; i++)
    {
    for (int j = 0; j<HideN_1; j++)
    {
    pBp->deltawh2[j][i] = pBp->alpha * pBp->deltawh2[j][i] + pBp->beta * pBp->h2_delta[i] * pBp->hOut_1[j];
    pBp->wh2[j][i] += pBp->deltawh2[j][i];
    }
    }


    for (int i=0; i<HideN_1; i++)
    {
    for (int j = 0; j<HideN_0; j++)
    {
    pBp->deltawh1[j][i] = pBp->alpha * pBp->deltawh1[j][i] + pBp->beta * pBp->h1_delta[i] * pBp->hOut_0[j];
    pBp->wh1[j][i] += pBp->deltawh1[j][i];
    }
    }

    for (int i=0; i<HideN_0; i++)
    {
    for (int j = 0; j<InputN; j++)
    {
    pBp->deltawh0[j][i] = pBp->alpha * pBp->deltawh0[j][i] + pBp->beta * pBp->h0_delta[i] * pBp->xOut[j];
    pBp->wh0[j][i] += pBp->deltawh0[j][i];
    }
    }

    }

    pBp->err = pBp->err/2;
    if (pBp->err < pBp->errLimit)
    {
    CString tmp;
    tmp.Format("学习成功, 已经收敛! 训练次数: %6d", loop);
    AfxMessageBox(tmp);
    break;
    }


    loop++;
    }


    }


    void FuzzyBP_JianYan(FuzzyBP_t *pBp, FuzzyBP_DATA_t *pData)
    {

    for (int i=0; i<InputN; i++)
    {
    pBp->xOut[i] = pData->Input[i];
    }

    for (int i=0; i<HideN_0; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<InputN; j++)
    {
    sumTemp += pBp->wh0[j][i] * pBp->xOut[j];
    }
    pBp->hOut_0[i] = tanh(sumTemp);
    }

    for (int i=0; i<HideN_1; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_0; j++)
    {
    sumTemp += pBp->wh1[j][i] * pBp->hOut_0[j];
    }
    pBp->hOut_1[i] = tanh(sumTemp);
    }



    for (int i=0; i<HideN_2; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_1; j++)
    {
    sumTemp += pBp->wh2[j][i] * pBp->hOut_1[j];
    }
    pBp->hOut_2[i] = tanh(sumTemp);
    }

    // 输出层
    for (int i=0; i<OutN; i++)
    {
    double sumTemp = 0.0;
    for (int j=0; j<HideN_2; j++)
    {
    sumTemp += pBp->v[j][i] * pBp->hOut_2[j];
    }
    pBp->yOut[i] = fuction_sigmod(sumTemp);
    }

    }

    int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
    {
    int nRetCode = 0;


    FuzzyBP_DATA_t data[15] =
    {
    { {1.780, 1.140 },1},
    { {1.960, 1.180 },1},
    { {1.860, 1.200 },1},
    { {1.720, 1.240 },0},
    { {2.000, 1.260 },1},
    { {2.000, 1.280 },1},
    { {1.960, 1.300 },1},
    { {1.740, 1.360 },0},

    { {1.640, 1.380 },0},
    { {1.820, 1.380 },0},
    { {1.900, 1.380 },0},
    { {1.700, 1.400 },0},
    { {1.820, 1.480 },0},
    { {1.820, 1.540 },0},
    { {2.080, 1.560 },0},
    };


    FuzzyBP_t *pBp = new FuzzyBP_t;
    pBp->alpha = 0.10;
    pBp->beta = 0.86;
    pBp->err = 100.0;
    pBp->errLimit = 0.0001;
    pBp->maxLoopNum = 1000;

    // pBp->alpha = 0.90;
    // pBp->beta = 0.26;
    // pBp->errLimit = 0.0001;
    // pBp->maxLoopNum = 5000;
    //


    FuzzyBP_XunLian(pBp, data, 15);

    printf(" 误差 %6.4f \n", pBp->err);


    for (int i=0; i<15; i++)
    {
    printf("%3d %8.5f %8.5f %8.5f ", i, data[i].Input[0], data[i].Input[1], data[i].Teach[0]);
    FuzzyBP_JianYan(pBp,&data[i]);

    printf(" %8.5f \n", data[i].Teach[0]);

    }

    system("pause");


    return nRetCode;
    }

    作者微信号: xh66i88
  • 相关阅读:
    设计模式 go语言实践-5 外观模式
    .net 5 preview发布
    设计模式 Vs实践-4 桥接模式
    设计模式 Vs实践-3 装饰器模式
    PowerDesign字段和中文名切换显示
    设计模式 Vs实践-2 抽象工厂模式
    设计模式 Vs实践-1 工厂模式
    环境变量path的值大于1024的解决办法
    powshell 输出字符编码的问题,设置为utf-8
    模拟真实点击click,专门对付clickoutside
  • 原文地址:https://www.cnblogs.com/signal/p/2883163.html
Copyright © 2011-2022 走看看