zoukankan      html  css  js  c++  java
  • TFboy养成记 多层感知器 MLP

    内容总结与莫烦的视频。

    这里多层感知器代码写的是一个简单的三层神经网络,输入层,隐藏层,输出层。代码的目的是你和一个二次曲线。同时,为了保证数据的自然,添加了mean为0,steddv为0.05的噪声。

    添加层代码:

    def addLayer(inputs,inSize,outSize,activ_func = None):#insize outsize表示输如输出层的大小,inputs是输入。activ_func是激活函数,输出层没有激活函数。默认激活函数为空
        with tf.name_scope(name = "layer"):
            with tf.name_scope("weigths"):
                Weights = tf.Variable(tf.random_normal([inSize,outSize]),name = "W")
            bias = tf.Variable(tf.zeros([1,outSize]),name = "bias")
            W_plus_b = tf.matmul(inputs,Weights)+bias
            if activ_func == None:
                return W_plus_b
            else:
                return activ_func(W_plus_b)

    输入:

    1 with tf.name_scope(name = "inputs"):#with这个主要是用来在tensorboard上显示用。
    2     xs = tf.placeholder(tf.float32,[None,1],name = "x_input")#不是-1哦
    3     ys = tf.placeholder(tf.float32,[None,1],name = "y_input")
    4 l1 = addLayer(xs,1,10,activ_func= tf.nn.relu)
    5 y_pre = addLayer(l1,10,1,activ_func=None)

    其他部分:

    需要注意的是

     1 with tf.name_scope("loss"):    
     2     loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-y_pre),
     3                       reduction_indices=[1]))#这里reduction_indices=[1]类似于numpy中的那种用法,是指横向还是竖向,reduce_sum函数貌似主要是用于矩阵的,向量可以不使用
     4 with tf.name_scope("train"):
     5     train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
     6 #在以后的版本中,这里的initialize_all_variable()可能被逐步抛弃使用global_variable_init(大概是这么写的)那个函数。欢迎指正。
     7 init = tf.initialize_all_variables()#init这一步很重要,在训练前一定要是使用sess.run(init)操作(只要是你用到了Variable)
     8 writer = tf.summary.FileWriter("logs/",sess.graph)
     9 with tf.Session() as sess:
    10     
    11     sess.run(init)
    12     
    13     for i in range(1000):
    14         sess.run(train_step,feed_dict = {xs:x_data,ys:y_data})
    15         if i % 50 == 0:
    16             print(sess.run(loss,feed_dict = {xs:x_data,ys:y_data}))#只要是你的操作中有涉及到placeholder一定要记得使用feed_dict

     所有代码:

     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on Tue Jun 13 15:41:23 2017
     4 
     5 @author: Jarvis
     6 """
     7 
     8 import tensorflow as tf
     9 import numpy as np
    10 
    11 def addLayer(inputs,inSize,outSize,activ_func = None):
    12     with tf.name_scope(name = "layer"):
    13         with tf.name_scope("weigths"):
    14             Weights = tf.Variable(tf.random_normal([inSize,outSize]),name = "W")
    15         bias = tf.Variable(tf.zeros([1,outSize]),name = "bias")
    16         W_plus_b = tf.matmul(inputs,Weights)+bias
    17         if activ_func == None:
    18             return W_plus_b
    19         else:
    20             return activ_func(W_plus_b)
    21 x_data = np.linspace(-1,1,300)[:,np.newaxis]
    22 noise = np.random.normal(0,0.05,x_data.shape)
    23 y_data = np.square(x_data)-0.5+noise
    24 
    25 with tf.name_scope(name = "inputs"):
    26     xs = tf.placeholder(tf.float32,[None,1],name = "x_input")#不是-1哦
    27     ys = tf.placeholder(tf.float32,[None,1],name = "y_input")
    28 l1 = addLayer(xs,1,10,activ_func= tf.nn.relu)
    29 y_pre = addLayer(l1,10,1,activ_func=None)
    30 with tf.name_scope("loss"):    
    31     loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-y_pre),
    32                       reduction_indices=[1]))
    33 with tf.name_scope("train"):
    34     train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    35 
    36 init = tf.initialize_all_variables()
    37 writer = tf.summary.FileWriter("logs/",sess.graph)
    38 with tf.Session() as sess:
    39     
    40     sess.run(init)
    41     
    42     for i in range(1000):
    43         sess.run(train_step,feed_dict = {xs:x_data,ys:y_data})
    44         if i % 50 == 0:
    45             print(sess.run(loss,feed_dict = {xs:x_data,ys:y_data}))
    View Code
  • 相关阅读:
    BZOJ.4293.[PA2015]Siano(线段树)
    洛谷.T21778.过年(线段树 扫描线)
    HDU.6155.Subsequence Count(线段树 矩阵)
    BZOJ.3687.简单题(bitset)
    var let const的区别
    2、electron进程
    1、Electron入门HelloWorld案例
    JUnit@Before失效
    十一、Thymeleaf的基础使用
    九、SpringBoot集成Thymeleaf模板引擎
  • 原文地址:https://www.cnblogs.com/silence-tommy/p/7039702.html
Copyright © 2011-2022 走看看