题目:
给定两个正方形及一个二维平面。请找出将这两个正方形分割成两半的一条直线。假设正方形顶边和底边与 x 轴平行。
每个正方形的数据square包含3个数值,正方形的左下顶点坐标[X,Y] = [square[0],square[1]],以及正方形的边长square[2]。所求直线穿过两个正方形会形成4个交点,请返回4个交点形成线段的两端点坐标(两个端点即为4个交点中距离最远的2个点,这2个点所连成的线段一定会穿过另外2个交点)。2个端点坐标[X1,Y1]和[X2,Y2]的返回格式为{X1,Y1,X2,Y2},要求若X1 != X2,需保证X1 < X2,否则需保证Y1 <= Y2。
若同时有多条直线满足要求,则选择斜率最大的一条计算并返回(与Y轴平行的直线视为斜率无穷大)。
示例:
输入:
square1 = {-1, -1, 2}
square2 = {0, -1, 2}
输出: {-1,0,2,0}
解释: 直线 y = 0 能将两个正方形同时分为等面积的两部分,返回的两线段端点为[-1,0]和[2,0]
提示:
square.length == 3
square[2] > 0
分析:
两个正方形中点的连线便是平分两个正方形的直线,然后再根据斜率的大小判断直线和上下边界相交还是和左右边界相交,要保持x优先。
程序:
class Solution { public double[] cutSquares(int[] square1, int[] square2) { double x1 = square1[0] + square1[2] / 2.0; double y1 = square1[1] + square1[2] / 2.0; double x2 = square2[0] + square2[2] / 2.0; double y2 = square2[1] + square2[2] / 2.0; if(x1 == x2){ double ry1 = Math.min(square1[1], square2[1]); double ry2 = Math.max(square1[1] + square1[2], square2[1] + square2[2]); return new double[]{x1, ry1, x2, ry2}; } double k = (y2 - y1) / (x2 - x1); double b = y1 - k * x1; double p1X, p1Y, p2X, p2Y; if(Math.abs(k) < =1){ p1X = square1[0] < square2[0] ? square1[0] : square2[0]; p1Y = k * p1X + b; p2X = square1[0] + square1[2] > square2[0]+square2[2] ? (square1[0] + square1[2]) : (square2[0] + square2[2]); p2Y = k * p2X + b; }else{ p1X = Math.min(Math.min((square1[1] + square1[2] - b) / k, (square1[1] - b) / k), Math.min((square2[1] + square2[2] - b) / k, (square2[1] - b) / k)); p1Y = k * p1X + b; p2X = Math.max(Math.max((square1[1] + square1[2] - b) / k, (square1[1] - b) / k), Math.max((square2[1] + square2[2] - b) / k, (square2[1] - b) / k)); p2Y = k * p2X + b; } return new double[]{p1X, p1Y, p2X, p2Y}; } }