zoukankan      html  css  js  c++  java
  • matplotlib模块

    1.基本用法

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-1, 1, 50)
    y = 2*x + 1
    # y = x**2
    plt.plot(x, y)
    plt.show()

    2.figure (一个figure就是一幅图)

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y1 = 2*x + 1
    y2 = x**2
    
    plt.figure()
    plt.plot(x, y1)
    
    
    plt.figure(num=3, figsize=(8, 5),)
    plt.plot(x, y2)
    # plot the second curve in this figure with certain parameters
    plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
    plt.show()

    3.坐标轴的设置(一)

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y1 = 2*x + 1
    y2 = x**2
    
    plt.figure()
    plt.plot(x, y2)
    # plot the second curve in this figure with certain parameters
    plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
    # set x limits
    plt.xlim((-1, 2))
    plt.ylim((-2, 3))
    plt.xlabel('I am x')
    plt.ylabel('I am y')
    
    # set new sticks
    new_ticks = np.linspace(-1, 2, 5)
    
    plt.xticks(new_ticks)
    # set tick labels
    plt.yticks([-2, -1.8, -1, 1.22, 3],
               [r'$really bad$', r'$bad$', r'$normal$', r'$good$', r'$really good$'])
    plt.show()

    4.坐标轴的设置(二)

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y1 = 2*x + 1
    y2 = x**2
    
    plt.figure()
    plt.plot(x, y2)
    # plot the second curve in this figure with certain parameters
    plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
    # set x limits
    plt.xlim((-1, 2))
    plt.ylim((-2, 3))
    
    # set new ticks
    new_ticks = np.linspace(-1, 2, 5)
    plt.xticks(new_ticks)
    # set tick labels
    plt.yticks([-2, -1.8, -1, 1.22, 3],
               ['$really bad$', '$bad$', '$normal$', '$good$', '$really good$'])
    # to use '$ $' for math text and nice looking, e.g. '$pi$'
    
    # gca = 'get current axis'
    ax = plt.gca()
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    
    ax.xaxis.set_ticks_position('bottom')
    # ACCEPTS: [ 'top' | 'bottom' | 'both' | 'default' | 'none' ]
    
    ax.spines['bottom'].set_position(('data', 0))
    # the 1st is in 'outward' | 'axes' | 'data'
    # axes: percentage of y axis
    # data: depend on y data
    
    ax.yaxis.set_ticks_position('left')
    # ACCEPTS: [ 'left' | 'right' | 'both' | 'default' | 'none' ]
    
    ax.spines['left'].set_position(('data',0))
    plt.show()

    5.legend(角标)

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y1 = 2*x + 1
    y2 = x**2
    
    plt.figure()
    # set x limits
    plt.xlim((-1, 2))
    plt.ylim((-2, 3))
    
    # set new sticks
    new_sticks = np.linspace(-1, 2, 5)
    plt.xticks(new_sticks)
    # set tick labels
    plt.yticks([-2, -1.8, -1, 1.22, 3],
               [r'$really bad$', r'$bad$', r'$normal$', r'$good$', r'$really good$'])
    
    l1, = plt.plot(x, y1, label='linear line')
    l2, = plt.plot(x, y2, color='red', linewidth=1.0, linestyle='--', label='square line')
    
    plt.legend(loc='upper right')
    # plt.legend(handles=[l1, l2], labels=['up', 'down'],  loc='best')
    # the "," is very important in here l1, = plt... and l2, = plt... for this step
    """legend( handles=(line1, line2, line3),
               labels=('label1', 'label2', 'label3'),
               'upper right')
        The *loc* location codes are::
              'best' : 0,          (currently not supported for figure legends)
              'upper right'  : 1,
              'upper left'   : 2,
              'lower left'   : 3,
              'lower right'  : 4,
              'right'        : 5,
              'center left'  : 6,
              'center right' : 7,
              'lower center' : 8,
              'upper center' : 9,
              'center'       : 10,"""
    
    plt.show()

    6.   3D图像

    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    
    fig = plt.figure()
    ax = Axes3D(fig)
    # X, Y value
    X = np.arange(-4, 4, 0.25)
    Y = np.arange(-4, 4, 0.25)
    X, Y = np.meshgrid(X, Y)
    R = np.sqrt(X ** 2 + Y ** 2)
    # height value
    Z = np.sin(R)
    
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'))
    """
    ============= ================================================
            Argument      Description
            ============= ================================================
            *X*, *Y*, *Z* Data values as 2D arrays
            *rstride*     Array row stride (step size), defaults to 10
            *cstride*     Array column stride (step size), defaults to 10
            *color*       Color of the surface patches
            *cmap*        A colormap for the surface patches.
            *facecolors*  Face colors for the individual patches
            *norm*        An instance of Normalize to map values to colors
            *vmin*        Minimum value to map
            *vmax*        Maximum value to map
            *shade*       Whether to shade the facecolors
            ============= ================================================
    """
    
    # I think this is different from plt12_contours
    ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.get_cmap('rainbow'))
    """
    ==========  ================================================
            Argument    Description
            ==========  ================================================
            *X*, *Y*,   Data values as numpy.arrays
            *Z*
            *zdir*      The direction to use: x, y or z (default)
            *offset*    If specified plot a projection of the filled contour
                        on this position in plane normal to zdir
            ==========  ================================================
    """
    
    ax.set_zlim(-2, 2)
    
    plt.show()

    7.animation动态图 (本人用的pycharm没动起来,想了解的可以看莫烦视频)

    import numpy as np
    from matplotlib import pyplot as plt
    from matplotlib import animation
    
    fig, ax = plt.subplots()
    
    x = np.arange(0, 2*np.pi, 0.01)
    line, = ax.plot(x, np.sin(x))
    
    
    def animate(i):
        line.set_ydata(np.sin(x + i/10.0))  # update the data
        return line,
    
    
    # Init only required for blitting to give a clean slate.
    def init():
        line.set_ydata(np.sin(x))
        return line,
    
    # call the animator.  blit=True means only re-draw the parts that have changed.
    # blit=True dose not work on Mac, set blit=False
    # interval= update frequency
    ani = animation.FuncAnimation(fig=fig, func=animate, frames=100, init_func=init,
                                  interval=20, blit=False)
    
    # save the animation as an mp4.  This requires ffmpeg or mencoder to be
    # installed.  The extra_args ensure that the x264 codec is used, so that
    # the video can be embedded in html5.  You may need to adjust this for
    # your system: for more information, see
    # http://matplotlib.sourceforge.net/api/animation_api.html
    # anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
    
    plt.show()

    8.bar (柱状图)

    import matplotlib.pyplot as plt
    import numpy as np
    
    n = 12
    X = np.arange(n)
    Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
    Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
    
    plt.bar(X, +Y1, facecolor='#4325FF', edgecolor='white')
    plt.bar(X, -Y2, facecolor='#FCFF5B', edgecolor='white')
    
    for x, y in zip(X, Y1):
        # ha: horizontal alignment
        # va: vertical alignment
        plt.text(x , y + 0.05, '%.2f' % y, ha='center', va='bottom')
    
    for x, y in zip(X, Y2):
        # ha: horizontal alignment
        # va: vertical alignment
        plt.text(x , -y - 0.05, '-%.2f' % y, ha='center', va='top')
    
    plt.xlim(-.5, n)
    plt.xticks(())
    plt.ylim(-1.25, 1.25)
    plt.yticks(())
    
    plt.show()

    9.contours(等高线)

    import matplotlib.pyplot as plt
    import numpy as np
    
    def f(x,y):
        # the height function
        return (1 - x / 2 + x**5 + y**3) * np.exp(-x**2 -y**2)
    
    n = 256
    x = np.linspace(-3, 3, n)
    y = np.linspace(-3, 3, n)
    X,Y = np.meshgrid(x, y)
    
    # use plt.contourf to filling contours
    # X, Y and value for (X,Y) point
    plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap=plt.cm.hot)
    
    # use plt.contour to add contour lines
    C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)
    # adding label
    plt.clabel(C, inline=True, fontsize=10)
    
    plt.xticks(())
    plt.yticks(())
    plt.show()

    10.三种格点布局方式 grid

    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    
    # method 1: subplot2grid
    ##########################
    plt.figure()
    ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)  # stands for axes
    ax1.plot([1, 2], [1, 2])
    ax1.set_title('ax1_title')
    ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)
    ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)
    ax4 = plt.subplot2grid((3, 3), (2, 0))
    ax4.scatter([1, 2], [2, 2])
    ax4.set_xlabel('ax4_x')
    ax4.set_ylabel('ax4_y')
    ax5 = plt.subplot2grid((3, 3), (2, 1))
    
    # method 2: gridspec
    #########################
    plt.figure()
    gs = gridspec.GridSpec(3, 3)
    # use index from 0
    ax6 = plt.subplot(gs[0, :])
    ax7 = plt.subplot(gs[1, :2])
    ax8 = plt.subplot(gs[1:, 2])
    ax9 = plt.subplot(gs[-1, 0])
    ax10 = plt.subplot(gs[-1, -2])
    
    # method 3: easy to define structure
    ####################################
    f, ((ax11, ax12), (ax13, ax14)) = plt.subplots(2, 2, sharex=True, sharey=True)
    ax11.scatter([1,2], [1,2])
    
    plt.tight_layout()
    plt.show()

    ----------------------------------------------------------------------------------------------------------------------------

    ------------------------------------------------------------------------------------------------------------------------------

    11.image

    import matplotlib.pyplot as plt
    import numpy as np
    
    # image data
    a = np.array([0.313660827978, 0.365348418405, 0.423733120134,
                  0.365348418405, 0.439599930621, 0.525083754405,
                  0.423733120134, 0.525083754405, 0.651536351379]).reshape(3,3)
    
    """
    for the value of "interpolation", check this:
    http://matplotlib.org/examples/images_contours_and_fields/interpolation_methods.html
    for the value of "origin"= ['upper', 'lower'], check this:
    http://matplotlib.org/examples/pylab_examples/image_origin.html
    """
    plt.imshow(a, interpolation='nearest', cmap='bone', origin='lower')
    plt.colorbar(shrink=.92)
    
    plt.xticks(())
    plt.yticks(())
    plt.show()

    12.plot in plot 

    import matplotlib.pyplot as plt
    
    fig = plt.figure()
    x = [1, 2, 3, 4, 5, 6, 7]
    y = [1, 3, 4, 2, 5, 8, 6]
    
    # below are all percentage
    left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
    ax1 = fig.add_axes([left, bottom, width, height])  # main axes
    ax1.plot(x, y, 'r')
    ax1.set_xlabel('x')
    ax1.set_ylabel('y')
    ax1.set_title('title')
    
    ax2 = fig.add_axes([0.2, 0.6, 0.25, 0.25])  # inside axes
    ax2.plot(y, x, 'b')
    ax2.set_xlabel('x')
    ax2.set_ylabel('y')
    ax2.set_title('title inside 1')
    
    
    # different method to add axes
    ####################################
    plt.axes([0.6, 0.2, 0.25, 0.25])
    plt.plot(y[::-1], x, 'g')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title('title inside 2')
    
    plt.show()

    13.secondary yaix

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.arange(0, 10, 0.1)
    y1 = 0.05 * x**2
    y2 = -1 *y1
    
    fig, ax1 = plt.subplots()
    
    ax2 = ax1.twinx()    # mirror the ax1
    ax1.plot(x, y1, 'g-')
    ax2.plot(x, y2, 'b--')
    
    ax1.set_xlabel('X data')
    ax1.set_ylabel('Y1 data', color='g')
    ax2.set_ylabel('Y2 data', color='b')
    
    plt.show()

    14.subplot

    import matplotlib.pyplot as plt
    
    # example 1:
    ###############################
    plt.figure(figsize=(6, 4))
    # plt.subplot(n_rows, n_cols, plot_num)
    plt.subplot(2, 2, 1)
    plt.plot([0, 1], [0, 1])
    
    plt.subplot(222)
    plt.plot([0, 1], [0, 2])
    
    plt.subplot(223)
    plt.plot([0, 1], [0, 3])
    
    plt.subplot(224)
    plt.plot([0, 1], [0, 4])
    
    plt.tight_layout()
    
    # example 2:
    ###############################
    plt.figure(figsize=(6, 4))
    # plt.subplot(n_rows, n_cols, plot_num)
    plt.subplot(2, 1, 1)
    # figure splits into 2 rows, 1 col, plot to the 1st sub-fig
    plt.plot([0, 1], [0, 1])
    
    plt.subplot(234)
    # figure splits into 2 rows, 3 col, plot to the 4th sub-fig
    plt.plot([0, 1], [0, 2])
    
    plt.subplot(235)
    # figure splits into 2 rows, 3 col, plot to the 5th sub-fig
    plt.plot([0, 1], [0, 3])
    
    plt.subplot(236)
    # figure splits into 2 rows, 3 col, plot to the 6th sub-fig
    plt.plot([0, 1], [0, 4])
    
    
    plt.tight_layout()
    plt.show()

    ------------------------------------------------------------------------------------------------------------------------------------------------------------

    15.tick_visibility(坐标可见)

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y = 0.1*x
    
    plt.figure()
    plt.plot(x, y, linewidth=10, zorder=1)      # set zorder for ordering the plot in plt 2.0.2 or higher
    plt.ylim(-2, 2)
    ax = plt.gca()
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))
    
    
    for label in ax.get_xticklabels() + ax.get_yticklabels():
        label.set_fontsize(12)
        # set zorder for ordering the plot in plt 2.0.2 or higher
        label.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.8, zorder=2))
    plt.show()

     

    16.散点scatter

    import matplotlib.pyplot as plt
    import numpy as np
    
    n = 1024    # data size
    X = np.random.normal(0, 1, n)
    Y = np.random.normal(0, 1, n)
    T = np.arctan2(Y, X)    # for color later on
    
    plt.scatter(X, Y, s=75, c=T, alpha=.5)
    
    plt.xlim(-1.5, 1.5)
    plt.xticks(())  # ignore xticks
    plt.ylim(-1.5, 1.5)
    plt.yticks(())  # ignore yticks
    
    plt.show()

    17.annotation(标注)

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y = 2*x + 1
    
    plt.figure(num=1, figsize=(8, 5),)
    plt.plot(x, y,)
    
    ax = plt.gca()
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))
    
    x0 = 1
    y0 = 2*x0 + 1
    plt.plot([x0, x0,], [0, y0,], 'k--', linewidth=2.5)
    plt.scatter([x0, ], [y0, ], s=50, color='b')
    
    # method 1:
    #####################
    plt.annotate(r'$2x+1=%s$' % y0, xy=(x0, y0), xycoords='data', xytext=(+30, -30),
                 textcoords='offset points', fontsize=16,
                 arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=.2"))
    
    # method 2:
    ########################
    plt.text(-3.7, 3, r'$This is the some text. mu sigma_i alpha_t$',
             fontdict={'size': 16, 'color': 'r'})
    
    plt.show()

  • 相关阅读:
    react-webpack
    react
    重置手机过程
    运用 Node-RED 开发 LoRa 应用
    IBM Node-RED 安装与使用教程
    Node-RED 入门教程:简介
    Thingsboard 3.0 修改 Title、默认语言、主题颜色
    Thingsboard 3.0 通过 tb-gateway 网关接入 MQTT 设备教程
    Thingsboard 入门学习笔记:属性
    ThingsBoard 3.0 版本发布
  • 原文地址:https://www.cnblogs.com/sima-3/p/10986796.html
Copyright © 2011-2022 走看看