题目: https://pintia.cn/problem-sets/1268384564738605056/problems/1274008636207132674
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
题解: https://blog.csdn.net/zhang35/article/details/107359559
代码:
#include <iostream> #include <vector> #include <stack> using namespace std; vector<int> pre; vector<int> in; vector<int> post; //已知pre、in,求post //root为根在pre中的下标, left、right为in中的左右边界 void Post(int root, int left, int right){ if (left > right) return; //定位in数组中根的位置,存储到i中 int i = left; while(i<right && in[i]!=pre[root]) i++; Post(root+1, left, i-1); Post(root+1+i-left, i+1, right); post.push_back(pre[root]); } int main(){ int n; cin >> n; stack<int> ss; string cmd; for (int i=0; i<2*n; i++){ int k; cin >> cmd; if (cmd=="Push"){ cin >> k; ss.push(k); pre.push_back(k); } else{ in.push_back(ss.top()); ss.pop(); } } Post(0, 0, n-1); cout << post[0]; for (int i=1; i<n; i++){ cout << " " << post[i]; } return 0; }