给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-binary-search-trees
class Solution { public: int numTrees(int n) { // 卡特兰数 可以用 dp的思想 搞出来。需要分析规律: // dp[i] 表示当有i个数字能组成的 BST 的个数 这个比较难想 vector<int> dp(n + 1); dp[0] = dp[1] = 1; for (int i = 2; i <= n; ++i) { for (int j = 0; j < i; ++j) { dp[i] += dp[j] * dp[i - j - 1]; } } return dp[n]; } };
95. 不同的二叉搜索树 II
给定一个整数 n,生成所有由 1 ... n 为节点所组成的二叉搜索树。
示例:
输入: 3
输出:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3