zoukankan      html  css  js  c++  java
  • 搭建Hadoop2.6.0+Eclipse开发调试环境

    上一篇在win7虚拟机下搭建了hadoop2.6.0伪分布式环境。为了开发调试方便,本文介绍在eclipse下搭建开发环境,连接和提交任务到hadoop集群。

    1. 环境

    Eclipse版本Luna 4.4.1

    安装插件hadoop-eclipse-plugin-2.6.0.jar,下载后放到eclipse/plugins目录即可。

    2. 配置插件

    2.1 配置hadoop主目录

    解压缩hadoop-2.6.0.tar.gz到C:Downloadshadoop-2.6.0,在eclipse的Windows->Preferences的Hadoop Map/Reduce中设置安装目录。

    2.2 配置插件

    打开Windows->Open Perspective中的Map/Reduce,在此perspective下进行hadoop程序开发。

        

    打开Windows->Show View中的Map/Reduce Locations,如下图右键选择New Hadoop location…新建hadoop连接。

    确认完成以后如下,eclipse会连接hadoop集群。

    如果连接成功,在project explorer的DFS Locations下会展现hdfs集群中的文件。

    3. 开发hadoop程序

    3.1 程序开发

    开发一个Sort示例,对输入整数进行排序。输入文件格式是每行一个整数。

     1 package com.ccb;
     2 
     3 /**
     4  * Created by hp on 2015-7-20.
     5  */
     6 
     7 import java.io.IOException;
     8 
     9 import org.apache.hadoop.conf.Configuration;
    10 import org.apache.hadoop.fs.FileSystem;
    11 import org.apache.hadoop.fs.Path;
    12 import org.apache.hadoop.io.IntWritable;
    13 import org.apache.hadoop.io.Text;
    14 import org.apache.hadoop.mapreduce.Job;
    15 import org.apache.hadoop.mapreduce.Mapper;
    16 import org.apache.hadoop.mapreduce.Reducer;
    17 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    18 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    19 
    20 public class Sort {
    21 
    22     // 每行记录是一个整数。将Text文本转换为IntWritable类型,作为map的key
    23     public static class Map extends Mapper<Object, Text, IntWritable, IntWritable> {
    24         private static IntWritable data = new IntWritable();
    25 
    26         // 实现map函数
    27         public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
    28             String line = value.toString();
    29             data.set(Integer.parseInt(line));
    30             context.write(data, new IntWritable(1));
    31         }
    32     }
    33 
    34     // reduce之前hadoop框架会进行shuffle和排序,因此直接输出key即可。
    35     public static class Reduce extends Reducer<IntWritable, IntWritable, IntWritable, Text> {
    36 
    37         //实现reduce函数
    38         public void reduce(IntWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
    39             for (IntWritable v : values) {
    40                 context.write(key, new Text(""));
    41             }
    42         }
    43     }
    44 
    45     public static void main(String[] args) throws Exception {
    46         Configuration conf = new Configuration();
    47 
    48         // 指定JobTracker地址
    49         conf.set("mapred.job.tracker", "192.168.62.129:9001");
    50         if (args.length != 2) {
    51             System.err.println("Usage: Data Sort <in> <out>");
    52             System.exit(2);
    53         }
    54         System.out.println(args[0]);
    55         System.out.println(args[1]);
    56 
    57         Job job = Job.getInstance(conf, "Data Sort");
    58         job.setJarByClass(Sort.class);
    59 
    60         //设置Map和Reduce处理类
    61         job.setMapperClass(Map.class);
    62         job.setReducerClass(Reduce.class);
    63 
    64         //设置输出类型
    65         job.setOutputKeyClass(IntWritable.class);
    66         job.setOutputValueClass(IntWritable.class);
    67 
    68         //设置输入和输出目录
    69         FileInputFormat.addInputPath(job, new Path(args[0]));
    70         FileOutputFormat.setOutputPath(job, new Path(args[1]));
    71         System.exit(job.waitForCompletion(true) ? 0 : 1);
    72     }
    73 }
    View Code

    3.2 配置文件

    把log4j.properties和hadoop集群中的core-site.xml加入到classpath中。我的示例工程是maven组织,因此放到src/main/resources目录。

    程序执行时会从core-site.xml中获取hdfs地址。

    3.3 程序执行

    右键选择Run As -> Run Configurations…,在参数中填好输入输出目录,执行Run即可。

     执行日志:

      1 hdfs://192.168.62.129:9000/user/vm/sort_in
      2 hdfs://192.168.62.129:9000/user/vm/sort_out
      3 15/07/27 16:21:36 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
      4 15/07/27 16:21:36 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
      5 15/07/27 16:21:36 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
      6 15/07/27 16:21:36 WARN mapreduce.JobSubmitter: No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
      7 15/07/27 16:21:36 INFO input.FileInputFormat: Total input paths to process : 3
      8 15/07/27 16:21:36 INFO mapreduce.JobSubmitter: number of splits:3
      9 15/07/27 16:21:36 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
     10 15/07/27 16:21:37 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1592166400_0001
     11 15/07/27 16:21:37 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
     12 15/07/27 16:21:37 INFO mapreduce.Job: Running job: job_local1592166400_0001
     13 15/07/27 16:21:37 INFO mapred.LocalJobRunner: OutputCommitter set in config null
     14 15/07/27 16:21:37 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
     15 15/07/27 16:21:37 INFO mapred.LocalJobRunner: Waiting for map tasks
     16 15/07/27 16:21:37 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_m_000000_0
     17 15/07/27 16:21:37 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
     18 15/07/27 16:21:37 INFO mapred.Task:  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@4c90dbc4
     19 15/07/27 16:21:37 INFO mapred.MapTask: Processing split: hdfs://192.168.62.129:9000/user/vm/sort_in/file1:0+25
     20 15/07/27 16:21:37 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
     21 15/07/27 16:21:37 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
     22 15/07/27 16:21:37 INFO mapred.MapTask: soft limit at 83886080
     23 15/07/27 16:21:37 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
     24 15/07/27 16:21:37 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
     25 15/07/27 16:21:37 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
     26 15/07/27 16:21:38 INFO mapred.LocalJobRunner: 
     27 15/07/27 16:21:38 INFO mapred.MapTask: Starting flush of map output
     28 15/07/27 16:21:38 INFO mapred.MapTask: Spilling map output
     29 15/07/27 16:21:38 INFO mapred.MapTask: bufstart = 0; bufend = 56; bufvoid = 104857600
     30 15/07/27 16:21:38 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214372(104857488); length = 25/6553600
     31 15/07/27 16:21:38 INFO mapred.MapTask: Finished spill 0
     32 15/07/27 16:21:38 INFO mapred.Task: Task:attempt_local1592166400_0001_m_000000_0 is done. And is in the process of committing
     33 15/07/27 16:21:38 INFO mapred.LocalJobRunner: map
     34 15/07/27 16:21:38 INFO mapred.Task: Task 'attempt_local1592166400_0001_m_000000_0' done.
     35 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_m_000000_0
     36 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_m_000001_0
     37 15/07/27 16:21:38 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
     38 15/07/27 16:21:38 INFO mapred.Task:  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@69e4d7d
     39 15/07/27 16:21:38 INFO mapred.MapTask: Processing split: hdfs://192.168.62.129:9000/user/vm/sort_in/file2:0+15
     40 15/07/27 16:21:38 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
     41 15/07/27 16:21:38 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
     42 15/07/27 16:21:38 INFO mapred.MapTask: soft limit at 83886080
     43 15/07/27 16:21:38 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
     44 15/07/27 16:21:38 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
     45 15/07/27 16:21:38 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
     46 15/07/27 16:21:38 INFO mapred.LocalJobRunner: 
     47 15/07/27 16:21:38 INFO mapred.MapTask: Starting flush of map output
     48 15/07/27 16:21:38 INFO mapred.MapTask: Spilling map output
     49 15/07/27 16:21:38 INFO mapred.MapTask: bufstart = 0; bufend = 32; bufvoid = 104857600
     50 15/07/27 16:21:38 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214384(104857536); length = 13/6553600
     51 15/07/27 16:21:38 INFO mapred.MapTask: Finished spill 0
     52 15/07/27 16:21:38 INFO mapred.Task: Task:attempt_local1592166400_0001_m_000001_0 is done. And is in the process of committing
     53 15/07/27 16:21:38 INFO mapred.LocalJobRunner: map
     54 15/07/27 16:21:38 INFO mapred.Task: Task 'attempt_local1592166400_0001_m_000001_0' done.
     55 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_m_000001_0
     56 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_m_000002_0
     57 15/07/27 16:21:38 INFO mapreduce.Job: Job job_local1592166400_0001 running in uber mode : false
     58 15/07/27 16:21:38 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
     59 15/07/27 16:21:38 INFO mapreduce.Job:  map 100% reduce 0%
     60 15/07/27 16:21:38 INFO mapred.Task:  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@4e931efa
     61 15/07/27 16:21:38 INFO mapred.MapTask: Processing split: hdfs://192.168.62.129:9000/user/vm/sort_in/file3:0+8
     62 15/07/27 16:21:39 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
     63 15/07/27 16:21:39 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
     64 15/07/27 16:21:39 INFO mapred.MapTask: soft limit at 83886080
     65 15/07/27 16:21:39 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
     66 15/07/27 16:21:39 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
     67 15/07/27 16:21:39 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
     68 15/07/27 16:21:39 INFO mapred.LocalJobRunner: 
     69 15/07/27 16:21:39 INFO mapred.MapTask: Starting flush of map output
     70 15/07/27 16:21:39 INFO mapred.MapTask: Spilling map output
     71 15/07/27 16:21:39 INFO mapred.MapTask: bufstart = 0; bufend = 24; bufvoid = 104857600
     72 15/07/27 16:21:39 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214388(104857552); length = 9/6553600
     73 15/07/27 16:21:39 INFO mapred.MapTask: Finished spill 0
     74 15/07/27 16:21:39 INFO mapred.Task: Task:attempt_local1592166400_0001_m_000002_0 is done. And is in the process of committing
     75 15/07/27 16:21:39 INFO mapred.LocalJobRunner: map
     76 15/07/27 16:21:39 INFO mapred.Task: Task 'attempt_local1592166400_0001_m_000002_0' done.
     77 15/07/27 16:21:39 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_m_000002_0
     78 15/07/27 16:21:39 INFO mapred.LocalJobRunner: map task executor complete.
     79 15/07/27 16:21:39 INFO mapred.LocalJobRunner: Waiting for reduce tasks
     80 15/07/27 16:21:39 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_r_000000_0
     81 15/07/27 16:21:39 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
     82 15/07/27 16:21:39 INFO mapred.Task:  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@49250068
     83 15/07/27 16:21:39 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@2129404b
     84 15/07/27 16:21:39 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=652528832, maxSingleShuffleLimit=163132208, mergeThreshold=430669056, ioSortFactor=10, memToMemMergeOutputsThreshold=10
     85 15/07/27 16:21:39 INFO reduce.EventFetcher: attempt_local1592166400_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
     86 15/07/27 16:21:40 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1592166400_0001_m_000002_0 decomp: 32 len: 36 to MEMORY
     87 15/07/27 16:21:40 INFO reduce.InMemoryMapOutput: Read 32 bytes from map-output for attempt_local1592166400_0001_m_000002_0
     88 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 32, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->32
     89 15/07/27 16:21:40 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1592166400_0001_m_000000_0 decomp: 72 len: 76 to MEMORY
     90 15/07/27 16:21:40 INFO reduce.InMemoryMapOutput: Read 72 bytes from map-output for attempt_local1592166400_0001_m_000000_0
     91 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 72, inMemoryMapOutputs.size() -> 2, commitMemory -> 32, usedMemory ->104
     92 15/07/27 16:21:40 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1592166400_0001_m_000001_0 decomp: 42 len: 46 to MEMORY
     93 15/07/27 16:21:40 INFO reduce.InMemoryMapOutput: Read 42 bytes from map-output for attempt_local1592166400_0001_m_000001_0
     94 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 42, inMemoryMapOutputs.size() -> 3, commitMemory -> 104, usedMemory ->146
     95 15/07/27 16:21:40 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
     96 15/07/27 16:21:40 INFO mapred.LocalJobRunner: 3 / 3 copied.
     97 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: finalMerge called with 3 in-memory map-outputs and 0 on-disk map-outputs
     98 15/07/27 16:21:40 INFO mapred.Merger: Merging 3 sorted segments
     99 15/07/27 16:21:40 INFO mapred.Merger: Down to the last merge-pass, with 3 segments left of total size: 128 bytes
    100 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: Merged 3 segments, 146 bytes to disk to satisfy reduce memory limit
    101 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: Merging 1 files, 146 bytes from disk
    102 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
    103 15/07/27 16:21:40 INFO mapred.Merger: Merging 1 sorted segments
    104 15/07/27 16:21:40 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 136 bytes
    105 15/07/27 16:21:40 INFO mapred.LocalJobRunner: 3 / 3 copied.
    106 15/07/27 16:21:40 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
    107 15/07/27 16:21:40 INFO mapred.Task: Task:attempt_local1592166400_0001_r_000000_0 is done. And is in the process of committing
    108 15/07/27 16:21:40 INFO mapred.LocalJobRunner: 3 / 3 copied.
    109 15/07/27 16:21:40 INFO mapred.Task: Task attempt_local1592166400_0001_r_000000_0 is allowed to commit now
    110 15/07/27 16:21:40 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1592166400_0001_r_000000_0' to hdfs://192.168.62.129:9000/user/vm/sort_out/_temporary/0/task_local1592166400_0001_r_000000
    111 15/07/27 16:21:40 INFO mapred.LocalJobRunner: reduce > reduce
    112 15/07/27 16:21:40 INFO mapred.Task: Task 'attempt_local1592166400_0001_r_000000_0' done.
    113 15/07/27 16:21:40 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_r_000000_0
    114 15/07/27 16:21:40 INFO mapred.LocalJobRunner: reduce task executor complete.
    115 15/07/27 16:21:40 INFO mapreduce.Job:  map 100% reduce 100%
    116 15/07/27 16:21:41 INFO mapreduce.Job: Job job_local1592166400_0001 completed successfully
    117 15/07/27 16:21:41 INFO mapreduce.Job: Counters: 38
    118     File System Counters
    119         FILE: Number of bytes read=3834
    120         FILE: Number of bytes written=1017600
    121         FILE: Number of read operations=0
    122         FILE: Number of large read operations=0
    123         FILE: Number of write operations=0
    124         HDFS: Number of bytes read=161
    125         HDFS: Number of bytes written=62
    126         HDFS: Number of read operations=41
    127         HDFS: Number of large read operations=0
    128         HDFS: Number of write operations=10
    129     Map-Reduce Framework
    130         Map input records=14
    131         Map output records=14
    132         Map output bytes=112
    133         Map output materialized bytes=158
    134         Input split bytes=339
    135         Combine input records=0
    136         Combine output records=0
    137         Reduce input groups=13
    138         Reduce shuffle bytes=158
    139         Reduce input records=14
    140         Reduce output records=14
    141         Spilled Records=28
    142         Shuffled Maps =3
    143         Failed Shuffles=0
    144         Merged Map outputs=3
    145         GC time elapsed (ms)=10
    146         CPU time spent (ms)=0
    147         Physical memory (bytes) snapshot=0
    148         Virtual memory (bytes) snapshot=0
    149         Total committed heap usage (bytes)=1420296192
    150     Shuffle Errors
    151         BAD_ID=0
    152         CONNECTION=0
    153         IO_ERROR=0
    154         WRONG_LENGTH=0
    155         WRONG_MAP=0
    156         WRONG_REDUCE=0
    157     File Input Format Counters 
    158         Bytes Read=48
    159     File Output Format Counters 
    160         Bytes Written=62
    View Code

    4. 可能出现的问题

    4.1 权限问题,无法访问HDFS

    修改集群hdfs-site.xml配置,关闭hadoop集群的权限校验。

    <property>

    <name>dfs.permissions</name>

    <value>false</value>

    </property>

    4.2 出现NullPointerException异常

    在环境变量中配置%HADOOP_HOME%为C:Downloadhadoop-2.6.0

    下载winutils.exe和hadoop.dll到C:Downloadhadoop-2.6.0in

    注意:网上很多资料说的是下载hadoop-common-2.2.0-bin-master.zip,但很多不支持hadoop2.6.0版本。需要下载支持hadoop2.6.0版本的程序。

    4.3 程序执行失败

    需要执行Run on Hadoop,而不是Java Application。

  • 相关阅读:
    Android 侧滑(双向滑动菜单)效果
    Android中PopupWindow中有输入框时无法弹出输入法的解决办法
    Android 调用图库选择图片实现和参数详解
    5.抽象类篇
    4.事件篇
    3.委托篇
    2.结构篇
    1.枚举篇
    读取excel到数据库里面
    Windows系统安装docker
  • 原文地址:https://www.cnblogs.com/simplestupid/p/4681144.html
Copyright © 2011-2022 走看看