zoukankan      html  css  js  c++  java
  • Catch That Cow (BFS)

    Catch That Cow

    Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 33021    Accepted Submission(s): 8956


    Problem Description
    Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

    * Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
    * Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

    If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
     
    Input
    Line 1: Two space-separated integers: N and K
     
    Output
    Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
     
    Sample Input
    5 17
     
    Sample Output
    4
    Hint
    The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
     
    Source
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <queue>
     5 using namespace std;
     6 #define scanf scanf_s
     7 const int N = 1000000;
     8 
     9 struct node {
    10     int x, step;
    11 };
    12 int n, k;
    13 bool vis[N+10];
    14 
    15 int check(int x) {
    16     if (x < 0 || x >= N || vis[x]) return 0;
    17     else return 1;
    18 }
    19 
    20 
    21 int bfs(int x) {
    22     memset(vis, 0, sizeof(vis));
    23     queue<node> q;
    24     node a;
    25     a.x = x; a.step = 0; vis[a.x] = 1;
    26     q.push(a);
    27     while (!q.empty()) {
    28         node a = q.front();
    29         q.pop();
    30         if (a.x == k) return a.step;
    31         node nxt = a;
    32         nxt.x = a.x + 1;
    33         if (check(nxt.x)) {
    34             nxt.step = a.step + 1;
    35             vis[nxt.x] = 1;
    36             q.push(nxt);
    37         }
    38         nxt.x = a.x - 1;
    39         if (check(nxt.x)) {
    40             nxt.step = a.step + 1;
    41             vis[nxt.x] = 1;
    42             q.push(nxt);
    43         }
    44         nxt.x = a.x * 2;
    45         if (check(nxt.x)) {
    46             nxt.step = a.step + 1;
    47             vis[nxt.x] = 1;
    48             q.push(nxt);
    49         }
    50     }
    51     return -1;
    52 
    53 }
    54 
    55 int main() {
    56     int ans;
    57     while (~scanf("%d%d", &n, &k))
    58     {
    59         ans = bfs(n);
    60         printf("%d
    ", ans);
    61     }
    62 
    63 
    64     return 0;
    65 }
  • 相关阅读:
    STL_算法_05_集合算法
    STL_算法_04_算术和生成算法
    STL_算法_03_拷贝和替换算法
    STL_算法_02_排序算法
    STL_算法_01_查找算法
    STL_容器使用时机
    STL_容器共通能力
    Qt5_选择文件对话框
    Qt5_当前exe所在路径
    Java 静态代理和动态代理
  • 原文地址:https://www.cnblogs.com/sineagle/p/14482960.html
Copyright © 2011-2022 走看看