zoukankan      html  css  js  c++  java
  • Codeforces 1490D Permutation Transformation

    D. Permutation Transformation
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    A permutation — is a sequence of length nn integers from 11 to nn, in which all the numbers occur exactly once. For example, [1][1], [3,5,2,1,4][3,5,2,1,4], [1,3,2][1,3,2] — permutations, and [2,3,2][2,3,2], [4,3,1][4,3,1], [0][0] — no.

    Polycarp was recently gifted a permutation a[1n]a[1…n] of length nn. Polycarp likes trees more than permutations, so he wants to transform permutation aa into a rooted binary tree. He transforms an array of different integers into a tree as follows:

    • the maximum element of the array becomes the root of the tree;
    • all elements to the left of the maximum — form a left subtree (which is built according to the same rules but applied to the left part of the array), but if there are no elements to the left of the maximum, then the root has no left child;
    • all elements to the right of the maximum — form a right subtree (which is built according to the same rules but applied to the right side of the array), but if there are no elements to the right of the maximum, then the root has no right child.

    For example, if he builds a tree by permutation a=[3,5,2,1,4]a=[3,5,2,1,4], then the root will be the element a2=5a2=5, and the left subtree will be the tree that will be built for the subarray a[11]=[3]a[1…1]=[3], and the right one — for the subarray a[35]=[2,1,4]a[3…5]=[2,1,4]. As a result, the following tree will be built:

    The tree corresponding to the permutation a=[3,5,2,1,4]a=[3,5,2,1,4].

    Another example: let the permutation be a=[1,3,2,7,5,6,4]a=[1,3,2,7,5,6,4]. In this case, the tree looks like this:

    The tree corresponding to the permutation a=[1,3,2,7,5,6,4]a=[1,3,2,7,5,6,4].

    Let us denote by dvdv the depth of the vertex avav, that is, the number of edges on the path from the root to the vertex numbered avav. Note that the root depth is zero. Given the permutation aa, for each vertex, find the value of dvdv.

    Input

    The first line contains one integer tt (1t1001≤t≤100) — the number of test cases. Then tt test cases follow.

    The first line of each test case contains an integer nn (1n1001≤n≤100) — the length of the permutation.

    This is followed by nn numbers a1,a2,,ana1,a2,…,an — permutation aa.

    Output

    For each test case, output nn values — d1,d2,,dnd1,d2,…,dn.

    Example
    input
    Copy
    3
    5
    3 5 2 1 4
    1
    1
    4
    4 3 1 2
    
    output
    Copy
    1 0 2 3 1 
    0 
    0 1 3 2 

     1 //2021-03-15 08:50:02
     2 #include <iostream>
     3 #include <cstdio>
     4 #include <cstring>
     5 #include <algorithm>
     6 using namespace std;
     7 #define scanf scanf_s
     8 
     9 const int N = 1001;
    10 const int M = 1001;
    11 
    12 struct node {
    13     int to, nxt;
    14 }e[M];
    15 int edge_num;
    16 int fir[N], d[N], a[N];
    17 
    18 void addEdge(int u, int v) {
    19     e[++edge_num].to = v;
    20     e[edge_num].nxt = fir[u];
    21     fir[u] = edge_num;
    22 }
    23 
    24 int T, n;
    25 
    26 int solve(int l, int r) {
    27     if (l == r) return r;
    28     if (l > r) return -1;
    29     int root;
    30     for (int i = l; i <= r; i++) {
    31         if (a[i] == *max_element(a + l, a + r + 1)) {
    32             root = i;
    33             break;
    34         }
    35     }
    36     int ls = solve(l, root - 1);
    37     int rs = solve(root + 1, r);
    38 
    39     if (ls != -1) addEdge(root, ls);
    40     if (rs != -1) addEdge(root, rs);
    41     return root;
    42 }
    43 
    44 void dfs(int u, int deg) {
    45     d[u] = deg;
    46     for (int i = fir[u]; i; i = e[i].nxt) {
    47         int to = e[i].to;
    48         dfs(to, deg + 1);
    49     }
    50 }
    51 
    52 int main() {
    53     scanf("%d", &T);
    54     while (T--) {
    55         memset(fir, 0, sizeof(fir));
    56         memset(d, 0, sizeof(d));
    57         memset(e, 0, sizeof(e));
    58         edge_num = 0;
    59         scanf("%d", &n);
    60         for (int i = 1; i <= n; i++) {
    61             scanf("%d", &a[i]);
    62         }
    63         solve(1, n);
    64         int root;
    65         for (int i = 1; i <= n; i++)
    66             if (a[i] == n) root = i;
    67         dfs(root, 0);
    68 
    69         for (int i = 1; i <= n; i++)
    70             printf("%d ", d[i]);
    71         printf("
    ");
    72     }
    73 
    74     return 0;
    75 }
  • 相关阅读:
    算法导论(1)堆排序
    Opencv--HoughCircles源码剖析
    数据结构算法应用C++语言描述——(1)C++基础知识
    Java编程的23种设计模式
    团队建设
    管理方法论和角色认知
    压力测试:怎样设计全链路压力测试平台
    09-数据库优化方案(二):写入数据量增加时,如何实现分库分表
    08-数据库优化方案(一):查询请求增加时,如何做主从分离
    07-池化技术:如何减少频繁创建数据库连接的性能损耗
  • 原文地址:https://www.cnblogs.com/sineagle/p/14539400.html
Copyright © 2011-2022 走看看