zoukankan      html  css  js  c++  java
  • HDU 1018 Big Number

    注册了HDU的账号以后从1001开始按顺序可以做的就做下去,先上题目:

    Big Number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 18921    Accepted Submission(s): 8458


    Problem Description
    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
     

     

    Input
    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
     

     

    Output
    The output contains the number of digits in the factorial of the integers appearing in the input.
     

     

    Sample Input
    2 10 20
     

     

    Sample Output
    7 19
     
     
      这一题题意就是求某个数n的阶乘有多少位。一开始没有头绪,后来来了人家的题解,人家给出了2种方法。一种是用公式(斯特林公式),另一种是常规方法。对这种方法的理解就是一个数A(j位)和另一个数B(k位)相乘,得到的数的位数是j+k-1位(这里之前的经验认为可能是j+k-1或者是j+k位,但是想了一下发现只会是j+k-1位,因为9*9==81,就算是进位加1也最高位也不会大于9),所以这里只需要求出A,B的位数就可以得到积的位数。这里使用了log10()函数,这函数的输入需要强制转换为浮点,而且输出也是double,但一开始相加的时候不需要管,只是最后输出的时候要强制装换为int再加上1。
     
    上代码:
      
    #include <iostream>
    #include <stdio.h>
    #include <math.h>
    using namespace std;
    
    int main()
    {
        int n;
        scanf("%d",&n);
        while(n--)
        {
            int t,i;
            double sum=0;
            scanf("%d",&t);
            for(i=1;i<=t;i++)
            {
                sum+=log10((double)i);
            }
            printf("%d\n",(int)sum+1);
        }
        return 0;
    }
  • 相关阅读:
    [Redis知识体系] 一文全面总结Redis知识体系
    MySQL数据导入到ClickHouse
    docker本地搭建clickhouse
    【linux】修改宝塔默认的PHP CLI版本
    windows 10 安装go环境
    docker安装centos8
    Bootstrap 简洁、直观、强悍的前端开发框架,让web开发更迅速、简单。
    C#调用WebService
    登录时,记住用户的帐号密码
    asp.net,cookie,写cookie,取cookie
  • 原文地址:https://www.cnblogs.com/sineatos/p/2990324.html
Copyright © 2011-2022 走看看