先上题目:
Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8442 Accepted Submission(s): 3858
Problem Description
Given
two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2],
...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your
task is to find a number K which make a[K] = b[1], a[K + 1] = b[2],
...... , a[K + M - 1] = b[M]. If there are more than one K exist, output
the smallest one.
Input
The
first line of input is a number T which indicate the number of cases.
Each case contains three lines. The first line is two numbers N and M (1
<= M <= 10000, 1 <= N <= 1000000). The second line contains
N integers which indicate a[1], a[2], ...... , a[N]. The third line
contains M integers which indicate b[1], b[2], ...... , b[M]. All
integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
题意就是给你两个数字序列,问你第二个序列在第一个序列的哪个位置第一次出现,如果没有出现过就输出-1。
这题其实就是一个kmp,字符改成了数字,而且要注意的是模式串有可能比原串长,这时候就直接输出-1。
上代码:
1 #include <stdio.h> 2 #include <string.h> 3 #define MAX 1000010 4 using namespace std; 5 6 int s[MAX],t[MAX],next[MAX],n,m; 7 8 void get_next() 9 { 10 int i,k; 11 memset(next,-1,sizeof(next)); 12 i=0; 13 k=-1; 14 while(i<m) 15 { 16 if(k==-1 || t[i]==t[k]){i++;k++;next[i]=k;} 17 else k=next[k]; 18 }/* 19 for(i=0;i<m;i++) printf("%d ",next[i]); 20 printf(" "); 21 */ 22 } 23 24 int kmp() 25 { 26 int i,j; 27 i=0;j=0; 28 while(i<n && j<m) 29 { 30 if(j==-1 || s[i]==t[j]){i++; j++;} 31 else j=next[j]; 32 } 33 if(j>=m) return i-m+1; 34 else return -1; 35 } 36 37 int main() 38 { 39 int T,i; 40 //freopen("data.txt","r",stdin); 41 scanf("%d",&T); 42 while(T--) 43 { 44 scanf("%d %d",&n,&m); 45 for(i=0;i<n;i++) scanf("%d",&s[i]); 46 for(i=0;i<m;i++) scanf("%d",&t[i]); 47 if(m>n) printf("-1 "); 48 else 49 { 50 get_next(); 51 int f=kmp(); 52 printf("%d ",f); 53 } 54 } 55 return 0; 56 }